Site-selective α-C(sp3)–H arylation of dialkylamines via hydrogen atom transfer catalysis-enabled radical aryl migration

Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.-P. & Boutevin, B. Biobased amines: From synthesis to polymers; present and future. Chem. Rev. 116, 14181–14224 (2016).Article 
PubMed 

Google Scholar 
Curran, M. P., Scott, L. J. & Perry, C. M. Cetirizine: a review of its use in allergic disorders. Drugs 64, 523–561 (2004).Article 
PubMed 

Google Scholar 
Farnier, M. Ezetimibe plus fenofibrate: a new combination therapy for the management of mixed hyperlipidaemia? Expert Opin. Pharmacother. 8, 1345–1352 (2007).Article 
PubMed 

Google Scholar 
Li, D.-D., Zhang, Y.-H., Zhang, W. & Zhao, P. Meta-analysis of randomized controlled trials on the efficacy and safety of Donepezil, Galantamine, Rivastigmine, and Memantine for the treatment of Alzheimer’s disease. Front. Neurosci. 13, 472 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Xie, J.-H., Zhu, S.-F. & Zhou, Q.-L. Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem. Rev. 111, 1713–1760 (2011).Article 
PubMed 

Google Scholar 
Ricci, A. & Bernardi, L. Methodologies in amine synthesis: Challenges and applications. 1st ed. Newark: John Wiley & Sons, Incorporated,Print (2021).Campos, K. R. Direct sp3 C–H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 36, 1069–1084 (2007).Article 
PubMed 

Google Scholar 
Mitchell, E. A., Peschiulli, A., Lefevre, N., Meerpoel, L. & Maes, B. U. W. Direct α-functionalization of saturated cyclic amines. Chem. Eur. J. 18, 10092–10142 (2012).Article 
PubMed 

Google Scholar 
Lei, Z., Zhang, W. & Wu, J. Photocatalytic hydrogen atom transfer-induced Arbuzov-type α-C(sp3)–H phosphonylation of aliphatic amines. ACS Catal. 13, 16105–16113 (2023).Article 

Google Scholar 
Zheng, J. et al. Copper-catalyzed general and selective α-C(sp3)–H silylation of amides via 1,5-hydrogen atom transfer. ACS Catal. 14, 1725–1732 (2024).Article 

Google Scholar 
Shen, Y., Funez-Ardoiz, I., Schoenebeck, F. & Rovis, T. Site-selective α-C–H functionalization of trialkylamines via reversible hydrogen atom transfer catalysis. J. Am. Chem. Soc. 143, 18952–18959 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Kaur, J., Barham, J. P. & Site-selective, C. (sp3)–H functionalizations mediated by hydrogen atom transfer reactions via α-amino/α-amido radicals. Synthesis 54, 1461–1477 (2022).Article 

Google Scholar 
Spangler, J. E., Kobayashi, Y., Verma, P., Wang, D.-H. & Yu, J.-Q. α-Arylation of saturated azacycles and N-methylamines via palladium(II)-catalyzed C(sp3)–H coupling. J. Am. Chem. Soc. 137, 11876–11879 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Gong, Y., Su, L., Zhu, Z., Ye, Y. & Gong, H. Nickel‐catalyzed thermal redox functionalization of C(sp3)−H bonds with carbon electrophiles. Angew. Chem. Int. Ed. 61, e202201662 (2022).Article 
ADS 

Google Scholar 
Ahneman, D. T. & Doyle, A. G. C–H Functionalization of amines with aryl halides by nickel-photoredox catalysis. Chem. Sci. 7, 7002–7006 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Gui, Y. Y. et al. Arylation of aniline C(sp3)−H bonds with phenols via an in situ activation strategy. Asian J. Org. Chem. 7, 537–541 (2018).Article 
ADS 

Google Scholar 
Ikeda, Y., Ueno, R., Akai, Y. & Shirakawa, E. α-Arylation of alkylamines with sulfonylarenes through a radical chain mechanism. Chem. Commun. 54, 10471–10474 (2018).Article 

Google Scholar 
Yonekura, K., Murooka, M., Aoki, K. & Shirakawa, E. Electrochemical direct α-arylation of alkylamines with sulfonylarenes. Org. Lett. 25, 6682–6687 (2023).Article 
PubMed 

Google Scholar 
McNally, A., Prier, C. K. & MacMillan, D. W. C. Discovery of an a-amino C–H arylation reaction using the strategy of accelerated serendipity. Science 334, 1114–1117 (2011).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Ma, Y. et al. Direct arylation of α‐amino C(sp3)‐H bonds by convergent paired electrolysis. Angew. Chem. Int. Ed. 58, 16548–16552 (2019).Article 

Google Scholar 
Ueno, R., Ikeda, Y. & Shirakawa, E. tert‐Butoxy‐radical‐promoted α‐arylation of alkylamines with aryl halides. Eur. J. Org. Chem. 28, 4188–4193 (2017).Article 

Google Scholar 
Qiang, C., Zhang, T., Feng, Z., Liu, P. & Sun, P. Direct amino-α-C−H heteroarylation of amides under electrochemical conditions. Org. Lett. 26, 493–497 (2024).Article 
PubMed 

Google Scholar 
Ide, T. et al. Regio- and chemoselective Csp3–H arylation of benzylamines by single electron transfer/hydrogen atom transfer synergistic catalysis. Chem. Sci. 9, 8453–8460 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Kobayashi, F. et al. Dual-role catalysis by thiobenzoic acid in Cα–H arylation under photoirradiation. ACS Catal. 11, 82–87 (2021).Article 

Google Scholar 
Murugesan, K. et al. Photoredox-catalyzed site-selective generation of carbanions from C(sp3)–H bonds in amines. ACS Catal. 12, 3974–3984 (2022).Article 

Google Scholar 
Chatterjee, J., Rechenmacher, F. & Kessler, H. N-Methylation of peptides and proteins: an important element for modulating biological functions. Angew. Chem. Int. Ed. 52, 254–269 (2003).Article 

Google Scholar 
Chatterjee, J., Gilon, C., Hoffman, A. & Kessler, H. N-Methylation of peptides: a new perspective in medicinal chemistry. Acc. Chem. Res. 41, 1331–1342 (2008).Article 
PubMed 

Google Scholar 
Barreiro, E. J., Kümmerle, A. E. & Fraga, C. A. M. The methylation effect in medicinal chemistry. Chem. Rev. 111, 5215–5246 (2011).Article 
PubMed 

Google Scholar 
McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).Article 
PubMed 

Google Scholar 
Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C-H Bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).Article 

Google Scholar 
Bellotti, P., Huang, H.-M., Faber, T. & Glorius, F. Photocatalytic late-stage C−H functionalization. Chem. Rev. 123, 4237–4352 (2023).Article 
PubMed 

Google Scholar 
Studer, A. & Bossart, M. Radical aryl migration reactions. Tetrahedron 57, 9649–9667 (2001).Article 

Google Scholar 
Chen, Z.-M., Zhang, X.-M. & Tu, Y.-Q. Radical aryl migration reactions and synthetic applications. Chem. Soc. Rev. 44, 5220–5245 (2015).Article 
ADS 
PubMed 

Google Scholar 
Holden, C. M. & Greaney, M. F. Modern aspects of the Smiles rearrangement. Chem. Eur. J. 23, 8992–9008 (2017).Article 
PubMed 

Google Scholar 
Li, W., Xu, W., Xie, J., Yu, S. & Zhu, C. Distal radical migration strategy: an emerging synthetic means. Chem. Soc. Rev. 47, 654–667 (2018).Article 
PubMed 

Google Scholar 
Huynh, M., De Abreu, M., Belmont, P. & Brachet, E. Spotlight on photoinduced aryl migration reactions. Chem. Eur. J. 27, 3581–3607 (2021).Article 
PubMed 

Google Scholar 
Wu, X., Ma, Z., Feng, T. & Zhu, C. Radical-mediated rearrangements: past, present, and future. Chem. Soc. Rev. 50, 11577–11613 (2021).Article 
PubMed 

Google Scholar 
Allen, A. R., Noten, E. A. & Stephenson, C. R. J. Aryl transfer strategies mediated by photoinduced electron transfer. Chem. Rev. 122, 2695–2751 (2022).Article 
PubMed 

Google Scholar 
Friese, F. W., Mück-Lichtenfeld, C. & Studer, A. Remote C−H functionalization using radical translocating arylating groups. Nat. Commun. 9, 2808 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wu, X. et al. Tertiary‐alcohol‐directed functionalization of remote C(sp3)−H bonds by sequential hydrogen atom and heteroaryl migrations. Angew. Chem. Int. Ed. 57, 1640–1644 (2018).Article 

Google Scholar 
Wu, X. & Zhu, C. Combination of radical functional group migration (FGM) and hydrogen atom transfer (HAT). Trends Chem. 4, 580–583 (2024).Article 

Google Scholar 
Kweon, B., Kim, C., Kim, S. & Hong, S. Remote C−H pyridylation of hydroxamates through direct photoexcitation of O-aryl oxime pyridinium intermediates. Angew. Chem. Int. Ed. 60, 26813–26821 (2021).Article 

Google Scholar 
Sarkar, S., Cheung, K. P. S. & Gevorgyan, V. C–H Functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem. Sci. 11, 12974–12993 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).Article 
PubMed 

Google Scholar 
Zhang, J. & Rueping, M. Metallaphotoredox catalysis for sp3 C–H functionalizations through hydrogen atom transfer (HAT). Chem. Soc. Rev. 52, 4099–4120 (2023).Article 
PubMed 

Google Scholar 
Cao, H., Tang, X., Tang, H., Yuan, Y. & Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem. Catal. 1, 523–598 (2021).Article 

Google Scholar 
Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 21, 456–463 (1988).Article 

Google Scholar 
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Leonard, D. J., Ward, J. W. & Clayden, J. Asymmetric α-arylation of amino acids. Nature 562, 105–109 (2018).Article 
ADS 
PubMed 

Google Scholar 
Abrams, R. & Clayden, J. Photocatalytic difunctionalization of vinyl ureas by radical addition polar Truce–Smiles rearrangement cascades. Angew. Chem. Int. Ed. 59, 11600–11606 (2020).Article 

Google Scholar 
Abrams, R., Jesani, M. H., Browning, A. & Clayden, J. Triarylmethanes and their medium‐ring analogues by unactivated Truce–Smiles rearrangement of benzanilides. Angew. Chem. Int. Ed. 60, 11272–11277 (2021).Article 

Google Scholar 
Wales, S. M., Saunthwal, R. K. & Clayden, J. C(sp3)-Arylation by conformationally accelerated intramolecular nucleophilic aromatic substitution (SNAr). Acc. Chem. Res. 55, 1731–1747 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom abstraction reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 28, 25–35 (1999).Article 

Google Scholar 
Ruffoni, A., Mykura, R. C., Bietti, M. & Leonori, D. The interplay of polar effects in controlling the selectivity of radical reactions. Nat. Synth. 1, 682–695 (2022).Article 
ADS 

Google Scholar 
An, Q. Identification of alkoxy radicals as hydrogen atom transfer agents in Ce catalyzed C–H functionalization. J. Am. Chem. Soc. 145, 359–376 (2023).Article 
PubMed 

Google Scholar 
Pulcinella, A., Bonciolini, S., Lukas, F., Sorato, A. & Noël, T. Photocatalytic alkylation of C(sp3)−H bonds using sulfonylhydrazones. Angew. Chem. Int. Ed. 62, e20221537 (2023).Article 

Google Scholar 
Allart-Simon, I., Gérard, S. & Sapi, J. Radical smiles rearrangement: an update. Molecules 21, 878 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Whalley, D. M., Seayad, J. & Greaney, M. F. Truce–Smiles rear-rangements by strain release: harnessing primary alkyl radicals for metal‐free arylation. Angew. Chem. Int. Ed. 60, 22219–22223 (2021).Article 

Google Scholar 
Yan, J. A Radical Smiles rearrangement promoted by neutral Eosin Y as a direct hydrogen atom transfer photocatalyst. J. Am. Chem. Soc. 142, 11357–11362 (2020).Article 
PubMed 

Google Scholar 
Wang, Z.-S. Ynamide Smiles rearrangement triggered by visible-light-mediated regioselective ketyl–ynamide coupling: rapid access to functionalized indoles and isoquinolines. J. Am. Chem. Soc. 142, 3636–3644 (2020).Article 
PubMed 

Google Scholar 
Monos, T. M., MeAtee, R. C. & Stephenson, C. R. J. Arylsulfonyla-cetamides as bifunctional reagents for alkene aminoarylation. Science 361, 1369–1373 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Kong, W., Casimiro, M., Merino, E. & Nevado, C. Copper-catalyzed one-pot trifluoromethylation/aryl migration/desulfonylation and C(sp2)–N bond formation of conjugated tosyl amides. J. Am. Chem. Soc. 135, 14480–14483 (2013).Article 
PubMed 

Google Scholar 
Singh, P. P. & Srivastava, V. Recent advances in using 4DPAIPN in photocatalytic transformations. Org. Biomol. Chem. 19, 313–321 (2021).Article 
PubMed 

Google Scholar 
Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press 2007; pp 1-1688.Dénès, F., Pichowicz, M., Povie, G. & Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 114, 2587–2693 (2014).Article 
PubMed 

Google Scholar 
Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).Article 
PubMed 

Google Scholar 
Kolk, M. R., van der., Janssen, M. A. C. H., Rutjes, F. P. J. T. & Blanco-Ania, D. Cyclobutanes in small-molecule drug candidates. ChemMedChem 17, e202200020 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Ilie, S., Alherz, A., Musgrave, C. B. & Glusac, K. D. Thermodynamic and kinetic hydricities of metalFree hydrides. Chem. Soc. Rev. 47, 2809–2836 (2018).Article 

Google Scholar 
Felpin, F. X. & Lebreton, J. Recent advances in the total synthesis of piperidine and pyrrolidine natural alkaloids with ring‐closing metathesis as a key step. Eur. J. Org. Chem. 20, 3693–3712 (2003).Article 

Google Scholar 
Bhat, C. Synthetic studies of alkaloids containing pyrrolidine and piperidine structural motifs. ChemistryOpen 4, 192–196 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, Q.-S., Li, J.-Q. & Zhang, Q.-W. Application of chiral piperidine scaffolds in drug design. Pharm. Fronts 05, e1–e14 (2023).Article 

Google Scholar 
Shen, Z. et al. General light-mediated, highly diastereoselective piperidine epimerization: from most accessible to most stable stereoisomer. J. Am. Chem. Soc. 143, 126–131 (2021).Article 
PubMed 

Google Scholar 
Clayden, J., Dufour, J., Grainger, D. & Helliwell, M. Substituted diarylmethylamines by stereospecific intramolecular electrophilic arylation of lithiated ureas. J. Am. Chem. Soc. 129, 7488–7489 (2007).Article 
PubMed 

Google Scholar 
Maury, J. & Clayden, J. α-Quaternary proline derivatives by intramolecular diastereoselective arylation of N-carboxamido proline ester enolates. J. Org. Chem. 80, 10757–10768 (2015).Article 
PubMed 

Google Scholar 
Bassan, E. et al. Visible-light driven photocatalytic CO2 reduction promoted by organic photosensitizers and a Mn(I) catalyst. Sustain. Energy Fuels 7, 3454–3463 (2023).Article 

Google Scholar 
Meng, X., Dong, Y., Liu, Q. & Wang, W. Organophotocatalytic α-deuteration of uunprotected primary amines via H/D exchange with D2O. Chem. Commun. 60, 296–299 (2024).Article 

Google Scholar 

Hot Topics

Related Articles