Ni-catalysed dicarbofunctionalization for the synthesis of sequence-encoded cyclooctene monomers

Ouchi, M., Badi, N., Lutz, J.-F. & Sawamoto, M. Single-chain technology using discrete synthetic macromolecules. Nat. Chem. 3, 917–924 (2011).Article 
CAS 
PubMed 

Google Scholar 
Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).Article 
PubMed 

Google Scholar 
Rylski, A. K. et al. Polymeric multimaterials by photochemical patterning of crystallinity. Science 378, 211–215 (2022).Article 
CAS 
PubMed 

Google Scholar 
Galdi, N., Buonerba, A. & Oliva, L. Olefin–styrene copolymers. Polymers 8, 405 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Luo, Y., Baldamus, J. & Hou, Z. Scandium half-metallocene-catalyzed syndiospecific styrene polymerization and styrene–ethylene copolymerization: unprecedented incorporation of syndiotactic styrene–styrene sequences in styrene–ethylene copolymers. J. Am. Chem. Soc. 126, 13910–13911 (2004).Article 
CAS 
PubMed 

Google Scholar 
Klosin, J., Fontaine, P. P. & Figueroa, R. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions. Acc. Chem. Res. 48, 2004–2016 (2015).Article 
CAS 
PubMed 

Google Scholar 
McKnight, A. L. & Waymouth, R. M. Group 4 ansa-cyclopentadienyl-amido catalysts for olefin polymerization. Chem. Rev. 98, 2587–2598 (1998).Article 
CAS 
PubMed 

Google Scholar 
Derosa, J., Tran, V. T., van der Puyl, V. A. & Engle, K. M. Carbon–carbon π-bonds as conjunctive reagents in cross-coupling. Aldrichimica Acta 51, 21–32 (2018).
Google Scholar 
Wickham, L. M. & Giri, R. Transition metal (Ni, Cu, Pd)-catalyzed alkene dicarbofunctionalization reactions. Acc. Chem. Res. 54, 3415–3437 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kang, T., Apolinar, O. & Engle, K. M. Ni- and Pd-catalyzed enantioselective 1,2-dicarbofunctionalization of alkenes. Synthesis 56, 1–15 (2024).Article 
CAS 

Google Scholar 
Xi, Y. et al. Catalytic asymmetric diarylation of internal acyclic styrenes and enamides. J. Am. Chem. Soc. 144, 8389–8398 (2022).Article 
CAS 
PubMed 

Google Scholar 
Derosa, J. et al. Nickel-catalyzed 1,2-diarylation of simple alkenyl amides. J. Am. Chem. Soc. 140, 17878–17883 (2018).Article 
CAS 
PubMed 

Google Scholar 
Derosa, J. et al. Nickel-catalyzed 1,2-diarylation of alkenyl carboxylates: a gateway to 1,2,3-trifunctionalized building blocks. Angew. Chem. Int. Ed. Engl. 59, 1201–1205 (2020).Article 
CAS 
PubMed 

Google Scholar 
Apolinar, O. et al. Sulfonamide directivity enables Ni-catalyzed 1,2-diarylation of diverse alkenyl amines. ACS Catal. 10, 14234–14239 (2020).Article 
CAS 

Google Scholar 
Apolinar, O. et al. Three-component asymmetric Ni-catalyzed 1,2-dicarbofunctionalization of unactivated alkenes via stereoselective migratory insertion. J. Am. Chem. Soc. 144, 19337–19343 (2022).Article 
CAS 
PubMed 

Google Scholar 
Martinez, H., Ren, N., Matta, M. E. & Hillmyer, M. A. Ring-opening metathesis polymerization of 8-membered cyclic olefins. Polym. Chem. 5, 3507–3532 (2014).Article 
CAS 

Google Scholar 
Sutthasupa, S., Shiotsuki, M. & Sanda, F. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polym. J. 42, 905–915 (2010).Article 
CAS 

Google Scholar 
Cho, I., Jeong, S. W. & Hwang, K. M. Synthesis and ring-opening metathesis polymerization of substituted cyclooctenes: butadiene-based sequence-controlled copolymers. Korea Polym. J. 1, 1–8 (1993). https://www.cheric.org/PDF/KPJ/KP01/KP01-1-0001.pdf.CAS 

Google Scholar 
You, W. et al. Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes. Chem. Sci. 12, 3898–3910 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).Article 
CAS 

Google Scholar 
Sathe, D. et al. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nat. Chem. 13, 743–750 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kobayashi, S., Pitet, L. M. & Hillmyer, M. A. Regio- and stereoselective ring-opening metathesis polymerization of 3-substituted cyclooctenes. J. Am. Chem. Soc. 133, 5794–5797 (2011).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J., Matta, M. E. & Hillmyer, M. A. Synthesis of sequence-specific vinyl copolymers by regioselective ROMP of multiply substituted cyclooctenes. ACS Macro Lett. 1, 1383–1387 (2012).Article 
CAS 
PubMed 

Google Scholar 
Katzbaer, J. N., Torres, V. M., Elacqua, E. & Giri, R. Nickel-catalyzed alkene difunctionalization as a method for polymerization. J. Am. Chem. Soc. 145, 14196–14201 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Han, F.-S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 42, 5270–5298 (2013).Article 
CAS 
PubMed 

Google Scholar 
Bhakta, S. & Ghosh, T. Emerging nickel catalysis in Heck reactions: recent developments. Adv. Synth. Catal. 362, 5257–5274 (2020).Article 
CAS 

Google Scholar 
Shu, W. et al. Ni-catalyzed reductive dicarbofunctionalization of nonactivated alkenes: scope and mechanistic insights. J. Am. Chem. Soc. 141, 13812–13821 (2019).Article 
CAS 
PubMed 

Google Scholar 
Miura, W., Hirano, K. & Miura, M. Nickel-catalyzed directed C6-selective C–H alkylation of 2-pyridones with dienes and activated alkenes. J. Org. Chem. 82, 5337–5344 (2017).Article 
CAS 
PubMed 

Google Scholar 
Huang, L. et al. Cascade cross-coupling of dienes: photoredox and nickel dual catalysis. Angew. Chem. Int. Ed. Engl. 59, 457–464 (2020).Article 
CAS 
PubMed 

Google Scholar 
Henry, P. M., Davies, M., Ferguson, G., Phillips, S. & Restivo, R. Conversion of cyclo-octa-1,5-diene into 2,6-diacetoxybicyclo[3,3,0]octane by palladium(II) chloride–lead tetra-acetate in acetic acid. X-ray determination of the structure of the product. J. Chem. Soc., Chem. Commun. 112–113 (1974).Li, Q. et al. Through-space charge-transfer polynorbornenes with fixed and controllable spatial alignment of donor and acceptor for high-efficiency blue thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 59, 20174–20182 (2020).Article 
CAS 
PubMed 

Google Scholar 
Cui, J., Yang, J.-X., Pan, L. & Li, Y.-S. Synthesis of novel cyclic olefin polymer with high glass transition temperature via ring-opening metathesis polymerization. Macromol. Chem. Phys. 217, 2708–2716 (2016).Article 
CAS 

Google Scholar 
Tsuji, J. & Takahashi, H. Organic syntheses by means of noble metal compounds. XII. Reaction of the cyclooctadiene-palladium chloride complex with ethyl malonate. J. Am. Chem. Soc. 87, 3275–3276 (1965).Article 
CAS 

Google Scholar 
Krafft, M. E., Sugiura, M. & Abboud, K. A. Novel use of ring strain to control regioselectivity: alkene-directed, palladium-catalyzed allylation. J. Am. Chem. Soc. 123, 9174–9175 (2001).Article 
CAS 
PubMed 

Google Scholar 
Ney, J. E. & Wolfe, J. P. Synthesis and reactivity of azapalladacyclobutanes. J. Am. Chem. Soc. 128, 15415–15422 (2006).Article 
CAS 
PubMed 

Google Scholar 
Gandeepan, P. & Cheng, C.-H. Allylic carbon–carbon double bond directed Pd-catalyzed oxidative ortho-olefination of arenes. J. Am. Chem. Soc. 134, 5738–5741 (2012).Article 
CAS 
PubMed 

Google Scholar 
Qiu, Y., Yang, B., Zhu, C. & Bäckvall, J.-E. Highly selective olefin-assisted palladium-catalyzed oxidative carbocyclization via remote olefin insertion. Chem. Sci. 8, 616–620 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zheng, X.-W. et al. Mechanistic insight into the selective olefin-directed oxidative carbocyclization and borylation by a palladium catalyst: a theoretical study. RSC Adv. 7, 5013–5018 (2017).Article 
CAS 

Google Scholar 
Johnson, J. B. & Rovis, T. More than bystanders: the effect of olefins on transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. Engl. 47, 840–871 (2008).Article 
CAS 
PubMed 

Google Scholar 
Tran, V. T. et al. Ni(COD)(DQ): an air-stable 18-electron nickel(0)–olefin precatalyst. Angew. Chem. Int. Ed. Engl. 59, 7409–7413 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tran, V. T. et al. Structurally diverse bench-stable nickel(0) pre-catalysts: a practical toolkit for in situ ligation protocols. Angew. Chem. Int. Ed. Engl. 62, e202211794 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao, P., Chen, L.-A. & Brown, M. K. Nickel-catalyzed stereoselective diarylation of alkenylarenes. J. Am. Chem. Soc. 140, 10653–10657 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Estrada, J. G., Williams, W. L., Ting, S. I. & Doyle, A. G. Role of electron-deficient olefin ligands in a Ni-catalyzed aziridine cross-coupling to generate quaternary carbons. J. Am. Chem. Soc. 142, 8928–8937 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Allinger, N. L. & Sprague, J. T. Conformational analysis. LXXXIV. A study of the structures and energies of some alkenes and cycloalkenes by the force field method. J. Am. Chem. Soc. 94, 5734–5747 (1972).Article 
CAS 

Google Scholar 
Sanford, M. S., Love, J. A. & Grubbs, R. H. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 20, 5314–5318 (2001).Article 
CAS 

Google Scholar 
Martinez, H., Miró, P., Charbonneau, P., Hillmyer, M. A. & Cramer, C. J. Selectivity in ring-opening metathesis polymerization of Z-cyclooctenes catalyzed by a second-generation Grubbs catalyst. ACS Catal. 2, 2547–2556 (2012).Article 
CAS 

Google Scholar 
Nowalk, J. A. et al. Sequence-controlled polymers through entropy-driven ring-opening metathesis polymerization: theory, molecular weight control, and monomer design. J. Am. Chem. Soc. 141, 5741–5752 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, B., Wang, L., Wu, C. & Cui, D. Sequence-controlled ethylene/styrene copolymerization catalyzed by scandium complexes. Polym. Chem. 10, 235–243 (2019).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles