Transitioning metal–organic frameworks from the laboratory to market through applied research

Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).Article 
PubMed 

Google Scholar 
Kaskel, S., D’Alessandro, D., Bennett, T. D. & Moon, H. R. Metal–organic frameworks: special collection 2020. Chemistry 28, e202200607 (2022).Article 
CAS 
PubMed 

Google Scholar 
Gropp, C. et al. Standard practices of reticular chemistry. ACS Cent. Sci. 6, 1255–1273 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ongari, D., Talirz, L. & Smit, B. Too many materials and too many applications: an experimental problem waiting for a computational solution. ACS Cent. Sci. 6, 1890–1900 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, J., Imaz, I. & Maspoch, D. Metal–organic frameworks: why make them small? Small Struct. 3, 2100126 (2022).Article 
CAS 

Google Scholar 
Cohen, S. M. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112, 970–1000 (2012).Article 
CAS 
PubMed 

Google Scholar 
Viciano-Chumillas, M. et al. Metal–organic frameworks as chemical nanoreactors: synthesis and stabilization of catalytically active metal species in confined spaces. Acc. Chem. Res. 53, 520–531 (2020).Article 
CAS 
PubMed 

Google Scholar 
Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).Article 
CAS 

Google Scholar 
Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).Article 
CAS 

Google Scholar 
Ding, M., Cai, X. & Jiang, H.-L. Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, C. et al. Metal–organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, W., Li, X., Li, Y., Zhu, R. & Pang, H. Applications of metal–organic-framework-derived carbon materials. Adv. Mater. 31, 1804740 (2019).Article 

Google Scholar 
Freund, R. et al. The current status of MOF and COF applications. Angew. Chem. Int. Ed. 60, 23975–24001 (2021).Article 
CAS 

Google Scholar 
Lin, R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019).Article 
CAS 

Google Scholar 
Farrusseng, D., Aguado, S. & Pinel, C. Metal–organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 48, 7502–7513 (2009).Article 
CAS 

Google Scholar 
Tibbetts, I. & Kostakis, G. E. Recent bio-advances in metal–organic frameworks. Molecules 25, 1291 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, R., Liang, Z., Zou, R. & Xu, Q. Metal–organic frameworks for batteries. Joule 2, 2235–2259 (2018).Article 
CAS 

Google Scholar 
Yang, F. et al. Applications of metal–organic frameworks in water treatment: a review. Small 18, 2105715 (2022).Article 
CAS 

Google Scholar 
Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).Article 
CAS 
PubMed 

Google Scholar 
Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G. & Fischer, R. A. Defective metal–organic frameworks. Adv. Mater. 30, 1704501 (2018).Article 

Google Scholar 
Frameworks for commercial success. Nat. Chem. 8, 987 (2016).Maine, E. & Seegopaul, P. Accelerating advanced-materials commercialization. Nat. Mater. 15, 487–491 (2016).Article 
CAS 
PubMed 

Google Scholar 
Reiss, T., Hjelt, K. & Ferrari, A. C. Graphene is on track to deliver on its promises. Nat. Nanotechnol. 14, 907–910 (2019).Article 
CAS 
PubMed 

Google Scholar 
Mankins, J. C. Technology readiness assessments: a retrospective. Acta Astronaut. 65, 1216–1223 (2009).Article 

Google Scholar 
Murphy, L. M. & Edwards, P. L. Bridging the Valley of Death: Transitioning from Public to Private Sector Financing (National Renewable Energy Laboratory, 2013); http://www.globalwateradvisors.com/wp-content/uploads/NREL-Bridging_the_Valley_of_Death1.pdfSeverino, M. I., Gkaniatsou, E., Nouar, F., Pinto, M. L. & Serre, C. MOFs industrialization: a complete assessment of production costs. Faraday Discuss. 231, 326–341 (2021).Article 
CAS 
PubMed 

Google Scholar 
Czaja, A. U., Trukhan, N. & Müller, U. Industrial applications of metal–organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009).Article 
CAS 
PubMed 

Google Scholar 
Mueller, U. et al. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).Article 
CAS 

Google Scholar 
Ryu, U. et al. Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coord. Chem. Rev. 426, 213544 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chen, Z. et al. The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discuss. 225, 9–69 (2021).Article 
CAS 
PubMed 

Google Scholar 
Stock, N. High-throughput investigations employing solvothermal syntheses. Micropor. Mesopor. Mater. 129, 287–295 (2010).Article 
CAS 

Google Scholar 
Luo, Y. et al. MOF synthesis prediction enabled by automatic data mining and machine learning. Angew. Chem. Int. Ed. 61, e202200242 (2022).Article 
CAS 

Google Scholar 
Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Zheng, Z. et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 18, 136–156 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wei, X.-F., Miao, J. & Shi, L.-L. Synthesis, crystal structure, and luminescent property of one 3D porous metal–organic framework with dmc topology. Syn. React. Inorg. Met. 46, 365–369 (2015).Article 

Google Scholar 
Lin, J.-B. et al. A scalable metal–organic framework as a durable physisorbent for carbon dioxide capture. Science 374, 1464–1469 (2021).Article 
CAS 
PubMed 

Google Scholar 
Cadiau, A. et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv. Mater. 27, 4775–4780 (2015).Article 
CAS 
PubMed 

Google Scholar 
Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R. & Müller, U. The progression of Al-based metal–organic frameworks—from academic research to industrial production and applications. Micropor. Mesopor. Mater. 157, 131–136 (2012).Article 
CAS 

Google Scholar 
Rubio-Martinez, M. et al. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453–3480 (2017).Article 
CAS 
PubMed 

Google Scholar 
Kumar, S. et al. Green synthesis of metal–organic frameworks: a state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 420, 213407 (2020).Article 
CAS 

Google Scholar 
Crawford, D. et al. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 6, 1645–1649 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Klimakow, M., Klobes, P., Thünemann, A. F., Rademann, K. & Emmerling, F. Mechanochemical synthesis of metal–organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater. 22, 5216–5221 (2010).Article 
CAS 

Google Scholar 
Rubio-Martinez, M. et al. Versatile, high quality and scalable continuous flow production of metal–organic frameworks. Sci. Rep. 4, 5443 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Taddei, M., Steitz, D. A., van Bokhoven, J. A. & Ranocchiari, M. Continuous-flow microwave synthesis of metal–organic frameworks: a highly efficient method for large-scale production. Chemistry 22, 3245–3249 (2016).Article 
CAS 
PubMed 

Google Scholar 
Carné-Sánchez, A., Imaz, I., Cano-Sarabia, M. & Maspoch, D. A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013).Article 
PubMed 

Google Scholar 
Garcia Marquez, A. et al. Green scalable aerosol synthesis of porous metal–organic frameworks. Chem. Commun. 49, 3848–3850 (2013).Article 
CAS 

Google Scholar 
Seo, Y.-K. et al. Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Micropor. Mesopor. Mater. 119, 331–337 (2009).Article 
CAS 

Google Scholar 
Faustini, M. et al. Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. J. Am. Chem. Soc. 135, 14619–14626 (2013).Article 
CAS 
PubMed 

Google Scholar 
Perini, G., Salvatori, F., Ochsenbein, D. R., Mazzotti, M. & Vetter, T. Filterability prediction of needle-like crystals based on particle size and shape distribution data. Sep. Purif. Technol. 211, 768–781 (2019).Article 
CAS 

Google Scholar 
Wee, L. H., Lohe, M. R., Janssens, N., Kaskel, S. & Martens, J. A. Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22, 13742–13746 (2012).Article 
CAS 

Google Scholar 
Casaban, J. et al. Towards MOFs’ mass market adoption: MOF technologies’ efficient and versatile one-step extrusion of shaped MOFs directly from raw materials. Faraday Discuss. 231, 312–325 (2021).Article 
CAS 
PubMed 

Google Scholar 
Lee, U.-H., Valekar, A. H., Hwang, Y. K. & Chang, J.-S. in The Chemistry of Metal–Organic Frameworks (ed. Kaskel, S.) 551–572 (Wiley, 2016).Yang, S. et al. Preparation of highly porous metal–organic framework beads for metal extraction from liquid streams. J. Am. Chem. Soc. 142, 13415–13425 (2020).Article 
CAS 
PubMed 

Google Scholar 
Purewal, J. J. et al. Increased volumetric hydrogen uptake of MOF-5 by powder densification. Int. J. Hydrog. Energy 37, 2723–2727 (2012).Article 
CAS 

Google Scholar 
Wang, T. C. et al. Surviving under pressure: the role of solvent, crystal size, and morphology during pelletization of metal–organic frameworks. ACS Appl. Mater. Interf. 13, 52106–52112 (2021).Article 
CAS 

Google Scholar 
Bétard, A. & Fischer, R. A. Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012).Article 
PubMed 

Google Scholar 
Shi, X., Shan, Y., Du, M. & Pang, H. Synthesis and application of metal–organic framework films. Coord. Chem. Rev. 444, 214060 (2021).Article 
CAS 

Google Scholar 
Tian, T. et al. A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018).Article 
CAS 
PubMed 

Google Scholar 
Suresh, K. et al. Optimizing hydrogen storage in mofs through engineering of crystal morphology and control of crystal size. J. Am. Chem. Soc. 143, 10727–10734 (2021).Article 
CAS 
PubMed 

Google Scholar 
Liu, M., Cai, N., Chan, V. & Yu, F. Development and applications of MOFs derivative one-dimensional nanofibers via electrospinning: a mini-review. Nanomaterials 9, 1306 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kearns, E. R., Gillespie, R. & D’Alessandro, D. M. 3D printing of metal–organic framework composite materials for clean energy and environmental applications. J. Mater. Chem. A 9, 27252–27270 (2021).Article 
CAS 

Google Scholar 
Quan, W. et al. Scalable formation of diamine-appended metal–organic framework hollow fiber sorbents for postcombustion CO2 capture. JACS Au 2, 1350–1358 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qian, Q. et al. MOF-based membranes for gas separations. Chem. Rev. 120, 8161–8266 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mondloch, J. E., Karagiaridi, O., Farha, O. K. & Hupp, J. T. Activation of metal–organic framework materials. CrystEngComm 15, 9258–9264 (2013).Article 
CAS 

Google Scholar 
Deacon, A. et al. Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production. Commun. Chem. 5, 18 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
DeSantis, D. et al. Techno-economic analysis of metal–organic frameworks for hydrogen and natural gas storage. Energy Fuels 31, 2024–2032 (2017).Article 
CAS 

Google Scholar 
Ma, J., Kalenak, A. P., Wong-Foy, A. G. & Matzger, A. J. Rapid guest exchange and ultra-low surface tension solvents optimize metal–organic framework activation. Angew. Chem. Int. Ed. 56, 14618–14621 (2017).Article 
CAS 

Google Scholar 
Lipsky, M. S. & Sharp, L. K. From idea to market: the drug approval process. J. Am. Board Fam. Pract. 14, 362–367 (2001).CAS 
PubMed 

Google Scholar 
Liu, Z., Deng, Z., Davis, S. J., Giron, C. & Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 3, 217–219 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).Article 
CAS 
PubMed 

Google Scholar 
Camiré, A., Lacroix, M.-A., Brouillette, M. & Vézina, G. Assessment of a direct air capture process scale-up. In Proc. 16th Greenhouse Gas Control Technologies Conference https://doi.org/10.2139/ssrn.4286353 (Elsevier, 2022).Hovington, P. et al. Rapid cycle temperature swing adsorption process using solid structured sorbent for CO2 capture from cement flue gas. In Proc. 16th Greenhouse Gas Control Technologies Conference https://doi.org/10.2139/ssrn.4286353 (Elsevier, 2021).Cui, S. et al. Metal–organic frameworks as advanced moisture sorbents for energy-efficient high temperature cooling. Sci. Rep. 8, 15284 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Gökpinar, S. et al. Air-con metal–organic frameworks in binder composites for water adsorption heat transformation systems. Ind. Eng. Chem. Res. 58, 21493–21503 (2019).Article 

Google Scholar 
Martins, V. F. D. et al. C2/C3 hydrocarbon separation by pressure swing adsorption on MIL-100(Fe). Ind. Eng. Chem. Res. 59, 10568–10582 (2020).Article 
CAS 

Google Scholar 
Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).Article 
CAS 
PubMed 

Google Scholar 
Worstell, J. in Scaling Chemical Processes (ed. Worstell, J.) 1–15 (Butterworth-Heinemann, 2016).McConville, F. X. The Pilot Plant Real Book: A Unique Handbook For The Chemical Process Industry 2nd edn (Fxm Engineering & Design, 2006).Commission Regulation (EU) 2021/2030 of 19 November 2021 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards N,N-dimethylformamide (European Commission, 2021); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R2030Karthi, S., Devadasan, S. R., Murugesh, R., Sreenivasa, C. G. & Sivaram, N. M. Global views on integrating Six Sigma and ISO 9001 certification. Total Qual. Manage. Bus. Excell. 23, 237–262 (2012).Article 

Google Scholar 
Wenger, S. R., Kearns, E. R., Miller, K. L. & D’Alessandro, D. M. Green, one-step mechanochemical synthesis and techno-economic analysis of UiO-66-NH2. ACS Appl. Energy Mater. https://doi.org/10.1021/acsaem.2c02460 (2022).Article 

Google Scholar 
Luo, H., Cheng, F., Huelsenbeck, L. & Smith, N. Comparison between conventional solvothermal and aqueous solution-based production of UiO-66-NH2: life cycle assessment, techno-economic assessment, and implications for CO2 capture and storage. J. Environ. Chem. Eng. 9, 105159 (2021).Article 
CAS 

Google Scholar 
Service, R. F. Crystalline nets harvest water from desert air, turn carbon dioxide into liquid fuel. Science https://doi.org/10.1126/science.aaz3733 (2019).Article 
PubMed 

Google Scholar 
Nakhla, J. & Caskey, S. Metal organic frameworks (MOFs). Sigma-Aldrich https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/materials-science-and-engineering/photovoltaics-and-solar-cells/metal-organic-frameworks (2024).Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Bettenhausen, C. The life-or-death race to improve carbon capture. Chemical & Engineering News https://cen.acs.org/environment/greenhouse-gases/capture-flue-gas-co2-emissions/99/i26 (2021).

Hot Topics

Related Articles