Cotton-quality fibers from complexation between anionic and cationic cellulose nanoparticles

Dochia, M., Sirghie, C., Kozłowski, R. M. & Roskwitalski, Z. 2- Cotton fibres. In Handbook of Natural Fibres Vol. 1 (ed. Kozłowski, R. M.) 11–23 (Woodhead Publishing, Sawston, 2012).Chapter 

Google Scholar 
Gębarowski, T., Jęśkowiak, I. & Wiatrak, B. Investigation of the properties of linen fibers and dressings. Int. J. Mol. Sci. 23(18), 10480 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Parajuli, P., Acharya, S., Rumi, S. S., Hossain, M. T. & Abidi, N. 4 – Regenerated cellulose in textiles: Rayon, lyocell, modal and other fibres. In Fundamentals of Natural Fibres and Textiles (ed. Mondal, M. I. HEd.) 87–110 (Woodhead Publishing, Sawston, 2021).Chapter 

Google Scholar 
Salleh, K. M., Armir, N. A. Z., Mazlan, N. S. N., Wang, C. & Zakaria, S. 2 – Cellulose and its derivatives in textiles: Primitive application to current trend. In Fundamentals of Natural Fibres and Textiles (ed. Mondal, M. I. HEd.) 33–63 (Woodhead Publishing, Sawston, 2021).Chapter 

Google Scholar 
Sixta, H. et al. Ioncell-F: A high-strength regenerated cellulose fibre. Nord. Pulp Pap. Res. J. 30(1), 43–57 (2015).Article 
CAS 

Google Scholar 
Sixta, H. et al. Ioncell-F: A high-strength regenerated cellulose fibre. Nord. Pulp Pap. Res. J. 30(1), 43–57. https://doi.org/10.3183/npprj-2015-30-01-p043-057 (2015).Article 
CAS 

Google Scholar 
Sixta, H. et al. Novel concepts of dissolving pulp production. Cellulose 20(4), 1547–1561. https://doi.org/10.1007/s10570-013-9943-1 (2013).Article 
CAS 

Google Scholar 
Balkissoon, S., Andrew, J. & Sithole, B. Dissolving wood pulp production: A review. Biomass Convers. Bioref. 13(18), 16607–16642. https://doi.org/10.1007/s13399-022-02442-z (2023).Article 

Google Scholar 
Sixta, H. Pulp properties and applications. In Handbook of Pulp 1009–1067 (Wiley, Hoboken, 2006).Chapter 

Google Scholar 
Rojas, O. J. Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials (Springer, Berlin, 2016).Book 

Google Scholar 
Salmela, J., Kiiskinen, H. & Oksanen, A. Method for the manufacture of fibrous yarn. Unite States Patent No US9200383B2. Accessed 6 Aug 2024. Avalable: https://patents.google.com/patent/US9200383B2/en (2024).Shen, Y. et al. High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction. Cellulose 23, 3393–3398 (2016).Article 
CAS 

Google Scholar 
Sorvari, A. et al. Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption. Carbohydr. Polym. 106, 283–292. https://doi.org/10.1016/j.carbpol.2014.02.032 (2014).Article 
CAS 
PubMed 

Google Scholar 
Lundahl, M. J., Klar, V., Wang, L., Ago, M. & Rojas, O. J. Spinning of cellulose nanofibrils into filaments: A review. Ind. Eng. Chem. Res. 56(1), 8–19. https://doi.org/10.1021/acs.iecr.6b04010 (2017).Article 
CAS 

Google Scholar 
Hosseini Ravandi, S. A. & Valizadeh, M. 2 – Properties of fibers and fabrics that contribute to human comfort. In Improving Comfort in Clothing (ed. Song, GEd.) 61–78 (Woodhead Publishing, Sawston, 2011).Chapter 

Google Scholar 
https://barnhardtcotton.net/technology/cotton-properties/(accessed 20.10.2023.Pillay, K. P. R. Investigation of the relation between the tensile properties of cotton fiber bundles and yarns in the dry and wet states. Text. Res. J. 33(5), 333–343. https://doi.org/10.1177/004051756303300503 (1963).Article 

Google Scholar 
Dochia, M., Sirghie, C., Kozłowski, R. M. & Roskwitalski, Z. Cotton fibres. In Handbook of Natural Fibres (ed Kozłowski, R. M.), Vol. 1. 11–23 (Woodhead Publishing, 2012).Chapter 

Google Scholar 
Haigler, C. Physiological and anatomical factors determining fiber structure and utility. In Physiology of cotton 33–47 (Springer, Netherlands, 2010).Chapter 

Google Scholar 
Schmutz, A., Buchala, A., Ryser, U. & Jenny, T. The phenols in the wax and in the suberin polymer of green cotton fibres and their functions. In Int. Symp. Nat. Phenols Plant Resist. 381, 269–275 (1993).
Google Scholar 
Nechyporchuk, O. et al. Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning. Adv. Mater. Technol. 4(2), 1800557 (2019).Article 

Google Scholar 
Chen, S., Schueneman, G., Pipes, R. B., Youngblood, J. & Moon, R. J. Effects of crystal orientation on cellulose nanocrystals-cellulose acetate nanocomposite fibers prepared by dry spinning. Biomacromolecules 15(10), 3827–3835. https://doi.org/10.1021/bm501161v (2014).Article 
CAS 
PubMed 

Google Scholar 
Iwamoto, S., Isogai, A. & Iwata, T. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12(3), 831–836. https://doi.org/10.1021/bm101510r (2011).Article 
CAS 
PubMed 

Google Scholar 
Mittal, N. et al. Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12(7), 6378–6388. https://doi.org/10.1021/acsnano.8b01084 (2018).Article 
CAS 
PubMed 

Google Scholar 
Chauve, G., Fraschini, C. & Jean, B. Separation of cellulose nanocrystals. In Handbook of green materials: 1 Bionanomaterials: separation processes, characterization and properties 73–87 (World Scientific, Singapore, 2014).
Google Scholar 
Jaekel, E. E., Sirviö, J. A., Antonietti, M. & Filonenko, S. One-step method for the preparation of cationic nanocellulose in reactive eutectic media. Green Chem. https://doi.org/10.1039/d0gc04282j (2021).Article 

Google Scholar 
Zhang, K. & Liimatainen, H. Hierarchical assembly of nanocellulose-based filaments by interfacial complexation. Small 14(38), 1801937 (2018).Article 

Google Scholar 
Grande, R., Trovatti, E., Carvalho, A. J. F. & Gandini, A. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J. Mater. Chem. A 5(25), 13098–13103. https://doi.org/10.1039/C7TA02467C (2017).Article 
CAS 

Google Scholar 
Zhang, K. et al. Interfacial nanoparticle complexation of oppositely charged nanocelluloses into functional filaments with conductive, drug release, or antimicrobial property. ACS Appl. Mater. Interfaces 12(1), 1765–1774. https://doi.org/10.1021/acsami.9b15555 (2020).Article 
CAS 
PubMed 

Google Scholar 
Reyes, G. et al. Coaxial spinning of all-cellulose systems for enhanced toughness: Filaments of oxidized nanofibrils sheathed in cellulose ii regenerated from a protic ionic liquid. Biomacromolecules 21(2), 878–891. https://doi.org/10.1021/acs.biomac.9b01559 (2020).Article 
CAS 
PubMed 

Google Scholar 
Reyes, G. et al. Cellulose gelation in NaOH(aq) by CO2 absorption: Effects of holding time and concentration on biomaterial development. Carbohydr. Polym. 302, 120355. https://doi.org/10.1016/j.carbpol.2022.120355 (2023).Article 
CAS 
PubMed 

Google Scholar 
Libonati, F. & Buehler, M. J. Advanced structural materials by bioinspiration. Adv. Eng. Mater. 19(5), 1600787 (2017).Article 

Google Scholar 
Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wegst, U. G. & Ashby, M. F. The mechanical efficiency of natural materials. Philos. Mag. 84(21), 2167–2186 (2004).Article 
ADS 
CAS 

Google Scholar 
Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Vocht, M. P. et al. High-performance cellulosic filament fibers prepared via dry-jet wet spinning from ionic liquids. Cellulose 28, 3055–3067 (2021).Article 
CAS 

Google Scholar 
Warrier, J. K. S., Munshi, V. G. & Chidambareswaran, P. K. Calculating Herman’s orientation factor. Text. Res. J. 57(9), 554–555. https://doi.org/10.1177/004051758705700912(acccessed2023/06/22) (1987).Article 

Google Scholar 
Mariano, M., El Kissi, N. & Dufresne, A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J. Polym. Sci. Part B: Polym. Phys. 52(12), 791–806 (2014).Article 
ADS 
CAS 

Google Scholar 
Isogai, A. & Kato, Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3), 153–164. https://doi.org/10.1023/A:1009208603673 (1998).Article 
CAS 

Google Scholar 
Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 16(6), 220–227. https://doi.org/10.1016/j.mattod.2013.06.004 (2013).Article 
CAS 

Google Scholar 
Reyes, G. et al. Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments. Green Chem. 24(9), 3794–3804. https://doi.org/10.1039/D2GC00573E (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles