Deoxygenative radical cross-coupling of C(sp3)−O/C(sp3)−H bonds promoted by hydrogen-bond interaction

Ertl, P. & Schuhmann, T. A systematic cheminformatics analysis of functional groups occurring in natural products. J. Nat. Prod. 82, 1258–1263 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dalton, T., Faber, T. & Glorius, F. C−H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lam, N. Y. S., Wu, K. & Yu, J.-Q. Advancing the logic of chemical synthesis: C−H activation as strategic and tactical disconnections for C−C bond construction. Angew. Chem. Int. Ed. 133, 15901–15924 (2021).Article 
ADS 

Google Scholar 
Boit, T. B., Bulger, A. S., Dander, J. E. & Garg, N. K. Activation of C−O and C−N bonds using non-precious metal catalysis. ACS Catal. 10, 12109–12126 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, No. eaaf7230 (2017).Article 
PubMed 

Google Scholar 
Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).Article 
CAS 

Google Scholar 
Zhou, J. & Fu, G. C. Cross-couplings of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides. J. Am. Chem. Soc. 125, 14726–14727 (2003).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Giovannini, R., Stüdemann, T., Dussin, G. & Knochel, P. An efficient nickel-catalyzed cross-coupling between sp3 carbon centers. Angew. Chem. Int. Ed. 37, 2387–2390 (1998).Article 
CAS 

Google Scholar 
Gao, Y., Zhang, B., He, J. & Baran, P. S. Ni-electrocatalytic enantioselective doubly decarboxylative C(sp3)–C(sp3) cross coupling. J. Am. Chem. Soc. 145, 11518–11523 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, B. et al. Complex molecule synthesis by electrocatalytic decarboxylative cross-coupling. Nature 623, 745–751 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhang, B. et al. Ni-electrocatalytic C(sp3)–C(sp3) doubly decarboxylative coupling. Nature 606, 313–318 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kang, K. & Weix, D. J. Nickel-catalyzed C(sp3)–C(sp3) cross-electrophile coupling of in situ generated NHP esters with unactivated alkyl bromides. Org. Lett. 24, 2853–2857 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, D. & Doyle, A. G. Ni/Photoredox-catalyzed C(sp3)–C(sp3) coupling between aziridines and acetals as alcohol-derived alkyl radical precursors. J. Am. Chem. Soc. 144, 20067–20077 (2022).Article 

Google Scholar 
Hao, Y. et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of unactivated alkenes with α-pyridyl alkyl electrophiles. ACS Catal. 13, 15633–15640 (2023).Article 
CAS 

Google Scholar 
Chen, M. & Montgomery, J. Nickel-catalyzed intermolecular enantioselective heteroaromatic C–H alkylation. ACS Catal. 12, 11015–11023 (2022).Article 

Google Scholar 
Canivet, J., Yamaguchi, J., Ban, I. & Itami, K. Nickel-catalyzed biaryl coupling of heteroarenes and aryl halides/triflates. Org. Lett. 11, 1733–1736 (2009).Article 
CAS 
PubMed 

Google Scholar 
He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C−H bonds. Chem. Rev. 117, 8754–8786 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C−H activation by synergistic metal catalysis. Chem 4, 199–222 (2018).Article 
CAS 

Google Scholar 
Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalyzed C–H functionalization chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rej, S., Ano, Y. & Chatani, N. An efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 120, 1788–1887 (2020). Bidentate Directing Groups.Article 
CAS 
PubMed 

Google Scholar 
Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).Article 
CAS 
PubMed 

Google Scholar 
Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).Article 
CAS 

Google Scholar 
Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Perry, I. B. et al. Direct arylation of strong aliphatic C–H bonds. Nature 560, 70–75 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Che, C., Lu, Y.-N. & Wang, C.-J. Enantio- and diastereoselective De Novo synthesis of 3‑substituted proline derivatives via cooperative photoredox/Brønsted acid catalysis and epimerization. J. Am. Chem. Soc. 145, 2779–2786 (2023).Article 
CAS 
PubMed 

Google Scholar 
Che, C., Li, Y.-N., Cheng, X., Lu, Y.-N. & Wang, C.-J. Visible-light-enabled enantioconvergent synthesis of α-amino acid derivatives via synergistic Brønsted acid/photoredox catalysis. Angew. Chem. Int. Ed. 60, 4698–4704 (2021).Article 
CAS 

Google Scholar 
Yang, L. et al. Molecular oxygen-mediated radical alkylation of C(sp3)−H bonds with boronic acids. Org. Lett. 23, 3207–3210 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).Article 
CAS 
PubMed 

Google Scholar 
Salman, M., Zhu, Z.-Q. & Huang, Z.-Z. Dehydrogenative cross-coupling reaction between N‑aryl α‑amino acid esters and phenols or phenol derivative for synthesis of α‑aryl α‑amino acid esters. Org. Lett. 18, 1526–1529 (2016).Article 
CAS 
PubMed 

Google Scholar 
Gao, X.-W. et al. Visible light catalysis assisted site-specific functionalization of amino acid derivatives by C−H bond activation without oxidant: cross-coupling hydrogen evolution reaction. ACS Catal. 5, 2391–2396 (2015).Article 
CAS 

Google Scholar 
Zhang, G., Zhang, Y. & Wang, R. Catalytic asymmetric activation of a C(sp3)−H bond adjacent to a nitrogen atom: a versatile approach to optically active α-alkyl α-amino acids and C1-alkylated tetrahydroisoquinoline derivatives. Angew. Chem. Int. Ed. 50, 10429–10432 (2011).Article 
CAS 

Google Scholar 
Zhao, L. & Li, C.-J. Functionalizing glycine derivatives by direct C–C bond formation. Angew. Chem. Int. Ed. 47, 7075–7078 (2008).Article 
CAS 

Google Scholar 
Qiu, Z. & Li, C.-J. Transformations of less-activated phenols and phenol derivatives via C–O cleavage. Chem. Rev. 120, 10454–10515 (2020).Article 
CAS 
PubMed 

Google Scholar 
Komeyama, K., Michiyuki, T. & Osaka, I. Nickel/Cobalt-catalyzed C(sp3)–C(sp3) cross-coupling of alkyl halides with alkyl tosylates. ACS Catal. 9, 9285–9291 (2019).Article 
CAS 

Google Scholar 
Liu, J.-H. et al. Copper-catalyzed reductive cross-coupling of nonactivated alkyl tosylates and mesylates with alkyl and aryl bromides. Chemistry 20, 15334–15338 (2014).Article 
CAS 
PubMed 

Google Scholar 
Greene, M. A., Yonova, I. M., Williams, F. J. & Jarvo, E. R. Traceless directing group for stereospecific nickel-catalyzed alkyl-alkyl cross-coupling reactions. Org. Lett. 14, 4293–4296 (2012).Article 
CAS 
PubMed 

Google Scholar 
Wisniewska, H. M., Swift, E. C. & Jarvo, E. R. Functional-group-tolerant, nickel-catalyzed cross-coupling reaction for enantioselective construction of tertiary methyl-bearing stereocenters. J. Am. Chem. Soc. 135, 9083–9090 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, H.-W. et al. Asymmetric deoxygenative cyanation of benzyl alcohols enabled by synergistic photoredox and copper catalysis. Chin. J. Chem. 38, 1671–1675 (2020).Article 
ADS 
CAS 

Google Scholar 
Lu, F.-D. et al. Asymmetric propargylic radical cyanation enabled by dual organophotoredox and copper catalysis. J. Am. Chem. Soc. 141, 6167–6172 (2019).Article 
CAS 
PubMed 

Google Scholar 
Sakai, A. & MacMillan, D. W. C. Nontraditional fragment couplings of alcohols and carboxylic acids: C(sp3)–C(sp3) cross-coupling via radical sorting. J. Am. Chem. Soc. 144, 6185–6192 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lyon, W. L. & MacMillan, D. W. C. Expedient access to underexplored chemical space: deoxygenative C(sp3)–C(sp3) cross-coupling. J. Am. Chem. Soc. 145, 7736–7742 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Intermaggio, N. E., Millet, A., Davis, D. L. & MacMillan, D. W. C. Deoxytrifluoromethylation of alcohols. J. Am. Chem. Soc. 144, 11961–11968 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schäfer, S. et al. Pyridylalanine-containing hydroxamic acids as selective HDAC6 inhibitors. ChemMedChem 4, 283–290 (2009).Article 
PubMed 

Google Scholar 
Mulliken, R. S. Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem. 56, 801–822 (1952).Article 
CAS 

Google Scholar 
Rosokha, S. V. & Kochi, J. K. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex. Acc. Chem. Res. 41, 641–653 (2008).Article 
CAS 
PubMed 

Google Scholar 
de Lima, C. G. S. M., Lima, T., Duarte, M., Jurberg, I. D. & Paixão, M. W. Organic synthesis enabled by light-irradiation of EDA complexes: theoretical background and synthetic applications. ACS Catal. 6, 1389–1407 (2016).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles