Metal oxyhalide-based heterogeneous catalytic water purification with ultralow H2O2 consumption

Lau, S. S. et al. Toxicological assessment of potable reuse and conventional drinking waters. Nat. Sustain. 6, 39–46 (2022).Article 

Google Scholar 
Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).Article 
CAS 

Google Scholar 
Miller, C. J., Chang, Y., Wegeberg, C., McKenzie, C. J. & Waite, T. D. Kinetic analysis of H2O2 activation by an iron(III) complex in water reveals a nonhomolytic generation pathway to an iron(IV) oxo complex. ACS Catal. 11, 787–799 (2021).Article 
CAS 

Google Scholar 
Xu, X. et al. Revealing *OOH key intermediates and regulating H2O2 photoactivation by surface relaxation of Fenton-like catalysts. Proc. Natl Acad. Sci. USA 119, e2205562119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Enami, S., Sakamoto, Y. & Colussi, A. J. Fenton chemistry at aqueous interfaces. Proc. Natl Acad. Sci. USA 111, 623–628 (2014).Article 
CAS 
PubMed 

Google Scholar 
Glaze, W. H., Kang, J. W. & Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone 9, 335–352 (1987).Article 
CAS 

Google Scholar 
Heycock, C. T. & Mills, W. H. Dr. H. J. H. Fenton, F.R.S. Nature 123, 248–249 (1929).Article 

Google Scholar 
Technical Specifications of Fenton Oxidation Process for Wastewater Treatment HJ 1095-2020 (Ministry of Ecology and Environment of China, 2020).Xing, M. Y. et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4, 1359–1372 (2018).Article 
CAS 

Google Scholar 
Lyu, L. & Hu, C. Heterogeneous Fenton catalytic water treatment technology and mechanism. Prog. Chem. 29, 981–999 (2017).CAS 

Google Scholar 
Zhu, Y. P. et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl. Catal. B 255, 117739 (2019).Article 
CAS 

Google Scholar 
Hou, L. et al. Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Appl. Catal. B 144, 739–749 (2014).Article 
CAS 

Google Scholar 
Vasseghian, Y., Almomani, F., Le, V. T., Moradi, M. & Dragoi, E. N. Decontamination of toxic malathion pesticide in aqueous solutions by Fenton-based processes: degradation pathway, toxicity assessment and health risk assessment. J. Hazard. Mater. 423, 127016 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhu, Z. et al. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: intermediates and pathway. Water Res. 93, 296–305 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhan, S. et al. Efficient Fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt–zinc oxides. Environ. Sci. Technol. 54, 8333–8343 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lyu, L., Yan, D., Yu, G., Cao, W. & Hu, C. Efficient destruction of pollutants in water by a dual-reaction-center Fenton-like process over carbon nitride compounds–complexed Cu(II)–CuAlO2. Environ. Sci. Technol. 52, 4294–4304 (2018).Article 
CAS 
PubMed 

Google Scholar 
Xu, J. W. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021).Article 
PubMed 

Google Scholar 
Wang, L., Cao, M., Ai, Z. & Zhang, L. Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core–shell nanowires by tetrapolyphosphate. Environ. Sci. Technol. 48, 3354–3362 (2014).Article 
CAS 
PubMed 

Google Scholar 
Yang, Z. C., Qian, J. S., Yu, A. Q. & Pan, B. C. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl Acad. Sci. USA 116, 6659–6664 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, Y. et al. In situ turning defects of exfoliated Ti3C2 mxene into Fenton-like catalytic active sites. Proc. Natl Acad. Sci. USA 120, e2210211120 (2023).Article 
CAS 
PubMed 

Google Scholar 
Fu, H. et al. Axial coordination tuning Fe single-atom catalysts for boosting H2O2 activation. Appl. Catal. B 321, 122012 (2023).Article 
CAS 

Google Scholar 
Wang, L. et al. Notable light-free catalytic activity for pollutant destruction over flower-like BiOI microspheres by a dual-reaction-center Fenton-like process. J. Colloid Interface Sci. 527, 251–259 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sen Gupta, S. et al. Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science 296, 326–328 (2002).Article 
PubMed 

Google Scholar 
Huang, M. et al. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: from fundamental investigation to pilot-scale demonstration. Proc. Natl Acad. Sci. USA 119, e2202682119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, C., Zhang, G., Zhang, W., Gu, Z. & Zhu, G. Specifically adsorbed ferrous ions modulate interfacial affinity for high-rate ammonia electrosynthesis from nitrate in neutral media. Proc. Natl Acad. Sci. USA 120, e2209979120 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xia, J. et al. Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid. Langmuir 27, 1200–1206 (2011).Article 
CAS 
PubMed 

Google Scholar 
Cheng, H., Huang, B. & Dai, Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6, 2009–2026 (2014).Article 
CAS 
PubMed 

Google Scholar 
Ling, C. et al. Atomic-layered Cu5 nanoclusters on FeS2 with dual catalytic sites for efficient and selective H2O2 activation. Angew. Chem. Int. Ed. 61, e202200670 (2022).Article 
CAS 

Google Scholar 
Ren, Y. et al. Enhancing the Fenton-like catalytic activity of nFe2O3 by MIL-53Cu support: a mechanistic investigation. Environ. Sci. Technol. 54, 5258–5267 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Y.-J. et al. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nat. Commun. 13, 3005 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Y. J. et al. Distinguishing homogeneous advanced oxidation processes in bulk water from heterogeneous surface reactions in organic oxidation. Proc. Natl Acad. Sci. USA 120, e2302407120 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hay, A. S. Polymerization by oxidative coupling. 2. Oxidation of 2,6-disubstituted phenols. J. Polym. Sci. 58, 581–591 (1962).Article 
CAS 

Google Scholar 
Maeno, Z., Mitsudome, T., Mizugaki, T., Jitsukawa, K. & Kaneda, K. Selective C–C coupling reaction of dimethylphenol to tetramethyldiphenoquinone using molecular oxygen catalyzed by Cu complexes immobilized in nanospaces of structurally-ordered materials. Molecules 20, 3089–3106 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Maeno, Z. et al. Regioselective oxidative coupling of 2,6-dimethylphenol to tetramethyldipheno-quinone using polyamine dendrimer-encapsulated Cu catalysts. RSC Adv. 3, 9662–9665 (2013).Article 
CAS 

Google Scholar 
Zhao, Y., Wu, L. B., Li, B. G. & Zhu, S. P. The effect of ligand molecular weight on copper salt catalyzed oxidative coupling polymerization of 2,6-dimethylphenol. J. Appl. Polym. Sci. 117, 3473–3481 (2010).Article 
CAS 

Google Scholar 
Gupta, S., van Dijk, J. A. P. P., Gamez, P., Challa, G. & Reedijk, J. Mechanistic studies for the polymerization of 2,6-dimethylphenol to poly(2,6-dimethyl-1,4-phenylene ether): LC-MS analyses showing rearrangement and redistribution products. Appl. Catal. A 319, 163–170 (2007).Article 
CAS 

Google Scholar 
Wang, J. L. et al. Interlayer structure manipulation of iron oxychloride by potassium cation intercalation to steer H2O2 activation pathway. J. Am. Chem. Soc. 144, 4294–4299 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yu, J., Taylor, K. E., Zou, H. X., Biswas, N. & Bewtra, J. K. Phenol conversion and dimeric intermediates in horseradish peroxidase-catalyzed phenol removal from water. Environ. Sci. Technol. 28, 2154–2160 (1994).Article 
CAS 
PubMed 

Google Scholar 
Yamaguchi, R., Kurosu, S., Suzuki, M. & Kawase, Y. Hydroxyl radical generation by zero-valent iron/Cu (ZVI/Cu) bimetallic catalyst in wastewater treatment: heterogeneous Fenton/Fenton-like reactions by Fenton reagents formed in-situ under oxic conditions. Chem. Eng. J. 334, 1537–1549 (2018).Article 
CAS 

Google Scholar 
Jain, B., Singh, A. K., Kim, H., Lichtfouse, E. & Sharma, V. K. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ. Chem. Lett. 16, 947–967 (2018).Article 
CAS 

Google Scholar 
Huang, G. X. et al. Ultrasensitive fluorescence detection of peroxymonosulfate based on a sulfate radical-mediated aromatic hydroxylation. Anal. Chem. 90, 14439–14446 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gentry, E. C. & Knowles, R. R. Synthetic applications of proton-coupled electron transfer. Acc. Chem. Res. 49, 1546–1556 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hammes-Schiffer, S. Proton-coupled electron transfer: moving together and charging forward. J. Am. Chem. Soc. 137, 8860–8871 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).Article 
CAS 
PubMed 

Google Scholar 
Yang, C. W., Hu, Y., Yuan, L., Zhou, H. Z. & Sheng, G. P. Selectively tracking nanoparticles in aquatic plant using core–shell nanoparticle-enhanced Raman spectroscopy imaging. ACS Nano 15, 19828–19837 (2021).Article 
CAS 
PubMed 

Google Scholar 
Liu, T. et al. Water decontamination via nonradical process by nanoconfined Fenton-like catalysts. Nat. Commun. 14, 2881 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, N. et al. Impact of ozonation on naphthenic acids speciation and toxicity of oil sands process-affected water to and mammalian immune system. Environ. Sci. Technol. 47, 6518–6526 (2013).Article 
CAS 
PubMed 

Google Scholar 
Ben, W. et al. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: comparison of wastewater treatment processes. Water Res. 130, 38–46 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lotfi, S., Fischer, K., Schulze, A. & Schafer, A. I. Photocatalytic degradation of steroid hormone micropollutants by TiO-coated polyethersulfone membranes in a continuous flow-through process. Nat. Nanotechnol. 17, 417–423 (2022).Article 
CAS 
PubMed 

Google Scholar 
He, R. et al. Priority control sequence of 34 typical pollutants in effluents of Chinese wastewater treatment plants. Water Res. 243, 120338 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhang, X., Ai, Z. H., Jia, F. L. & Zhang, L. Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112, 747–753 (2008).Article 
CAS 

Google Scholar 
Yang, X. J., Xu, X. M., Xu, J. & Han, Y. F. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J. Am. Chem. Soc. 135, 16058–16061 (2013).Article 
CAS 
PubMed 

Google Scholar 
Gao, P. et al. VOCl as a cathode for rechargeable chloride ion batteries. Angew. Chem. Int. Ed. 55, 4285–4290 (2016).Article 
CAS 

Google Scholar 
Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).Article 
CAS 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles