Molecular folding governs switchable singlet oxygen photoproduction in porphyrin-decorated bistable rotaxanes

Feringa, B. L. & Browne, W. R. (Eds.) Molecular switches. Wiley‐VCH, Weinheim (2011).Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, L., Marcos, V. & Leigh, D. A. Molecular machines with bio-inspired mechanisms. Proc. Natl Acad. Sci. USA 115, 9397–9404 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, H., Bisoyi, H. K., Zhang, X., Hassan, F. & Li, Q. Visible light-driven molecular switches and motors: recent developments and applications. Chem. Eur. J. 28, e202103906 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014).Article 
CAS 
PubMed 

Google Scholar 
Antoine, A., Moulin, E., Fuks, G. & Giuseppone, N. [c2]Daisy chain rotaxanes as molecular muscles. CCS Chem. 1, 83–96 (2019).Article 

Google Scholar 
Karimi, M., Mirshekari, H., Aliakbari, M., Sahandi-Zangabad, P. & Hamblin, M. R. Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnol. Rev. 5, 195–207 (2016).Article 
CAS 

Google Scholar 
Chen, W., Glackin, C. A., Horwitz, M. A. & Zink, J. I. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc. Chem. Res. 52, 1531–1542 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dattler, D. et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem. Rev. 120, 310–433 (2019).Article 
PubMed 

Google Scholar 
Leigh, D. A., Marcos, V. & Wilson, M. R. Rotaxane catalysts. ACS Catal. 4, 4490–4497 (2014).Article 
CAS 

Google Scholar 
Blanco, V., Leigh, D. A. & Marcos, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).Article 
CAS 
PubMed 

Google Scholar 
Martinez-Cuezva, A., Saura-Sanmartin, A., Alajarin, M. & Berna, J. Mechanically interlocked catalysts for asymmetric synthesis. ACS Catal. 10, 7719–7733 (2020).Article 
CAS 

Google Scholar 
Kwamen, C. & Niemeyer, J. Functional rotaxanes in catalysis. Chem. Eur. J. 27, 175–186 (2021).Article 
CAS 
PubMed 

Google Scholar 
Heard, A. W., Suárez, J. M. & Goldup, S. M. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat. Rev. Chem. 6, 182–196 (2022).Article 
PubMed 

Google Scholar 
Kwan, C.-S., Chan, A. S. C. & Leung, K. C.-F. A fluorescent and switchable rotaxane dual organocatalyst. Org. Lett. 18, 976–979 (2016).Article 
CAS 
PubMed 

Google Scholar 
Ma, X. et al. A room temperature phosphorescence encoding [2]rotaxane molecular shuttle. Chem. Sci. 7, 4582–4588 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ghosh, A., Paul, I., Adlung, M., Wickleder, C. & Schmittel, M. Oscillating emission of [2]rotaxane driven by chemical fuel. Org. Lett. 20, 1046–1049 (2018).Article 
CAS 
PubMed 

Google Scholar 
Neal, E. A. & Goldup, S. M. Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. Chem. Commun. 50, 5128–5142 (2014).Article 
CAS 

Google Scholar 
van Dongen, S. F. M., Cantekin, S., Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Functional interlocked systems. Chem. Soc. Rev. 43, 99–122 (2014).Article 
PubMed 

Google Scholar 
Lewis, J. E., Galli, M. & Goldup, S. M. Properties and emerging applications of mechanically interlocked ligands. Chem. Commun. 53, 298–312 (2016).Article 

Google Scholar 
Sluysmans, D. & Stoddart, J. F. The burgeoning of mechanically interlocked molecules in chemistry. Trends Chem. 1, 185–197 (2019).Article 
CAS 

Google Scholar 
Wu, P., Dharmadhikari, B., Patra, P. & Xiong, X. Rotaxane nanomachines in future molecular electronics. Nanoscale Adv. 4, 3418–3461 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bukhtiiarova, N., Credi, A. & Corra, S. Controlling molecular shuttling in a rotaxane with weak ring recognition sites. Chem. Commun. 59, 13159–13162 (2023).Article 
CAS 

Google Scholar 
Coutrot, F. A focus on triazolium as a multipurpose molecular station for pH‐sensitive interlocked crown‐ether‐based molecular machines. ChemistryOpen 4, 556–576 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ragazzon, G., Credi, A. & Colasson, B. Thermodynamic insights on a bistable acid–base switchable molecular shuttle with strongly shifted co-conformational equilibria. Chem. Eur. J. 23, 2149–2156 (2017).Article 
CAS 
PubMed 

Google Scholar 
Eichstaedt, K. et al. Switching between anion-binding catalysis and aminocatalysis with a rotaxane dual-function catalyst. J. Am. Chem. Soc. 139, 9376–9381 (2017).Article 
CAS 
PubMed 

Google Scholar 
Blanco, V., Leigh, D. A., Marcos, V., Morales-Serna, J. A. & Nussbaumer, A. L. A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral. Secondary Amine J. Am. Chem. Soc. 136, 4905–4908 (2014).Article 
CAS 
PubMed 

Google Scholar 
Blanco, V., Leigh, D. A., Lewandowska, U., Lewandowski, B. & Marcos, V. Exploring the activation modes of a rotaxane-based switchable organocatalyst. J. Am. Chem. Soc. 136, 15775–15780 (2014).Article 
CAS 
PubMed 

Google Scholar 
Blanco, V., Carlone, A., Hänni, K. D., Leigh, D. A. & Lewandowski, B. A rotaxane-based switchable organocatalyst. Angew. Chem. Int. Ed. 51, 5166–5169 (2012).Article 
CAS 

Google Scholar 
Du, G., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle‐like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).Article 
CAS 

Google Scholar 
Coutrot, F., Romuald, C. & Busseron, E. A new pH-switchable dimannosyl[c2]daisy chain molecular machine. Org. Lett. 10, 3741–3744 (2008).Article 
CAS 
PubMed 

Google Scholar 
Li, H. et al. A switchable bis-branched [1]rotaxane featuring dual-mode molecular motions and tunable molecular aggregation. ACS Appl. Mater. Interfaces 6, 18921–18929 (2014).Article 
CAS 
PubMed 

Google Scholar 
Li, H., Li, X., Ågren, H. & Qu, D.-H. Two switchable star-shaped [1]rotaxanes with different multibranched cores. Org. Lett. 16, 4940–4943 (2014).Article 
CAS 
PubMed 

Google Scholar 
Cao, Z. Q. et al. A perylene‐bridged switchable [3]rotaxane molecular shuttle with a fluorescence output. Asian J. Org. Chem. 4, 212–216 (2014).Article 

Google Scholar 
Zhou, W. et al. A bis-spiropyran-containing multi-state [2]rotaxane with fluorescence output. Tetrahedron 69, 5319–5325 (2013).Article 
CAS 

Google Scholar 
Li, H. et al. Dual-mode operation of a bistable [1]rotaxane with a fluorescence signal. Org. Lett. 15, 3070–3073 (2013).Article 
CAS 
PubMed 

Google Scholar 
Yang, W. et al. Synthesis of a [2]rotaxane operated in basic environment. Org. Biomol. Chem. 9, 6022 (2011).Article 
CAS 
PubMed 

Google Scholar 
Jiang, Q., Zhang, H.-Y., Han, M., Ding, Z.-J. & Liu, Y. pH-controlled intramolecular charge-transfer behavior in bistable [3]rotaxane. Org. Lett. 12, 1728–1731 (2010).Article 
CAS 
PubMed 

Google Scholar 
Maharjan, P. S. & Bhattarai, H. K. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. J. Oncol. 2022, 1–20 (2022).Article 

Google Scholar 
Correia, J. H., Rodrigues, J. A., Pimenta, S., Dong, T. & Yang, Z. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics 13, 1332 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alessandri, I. & Vassalini, I. Oxygen‐mediated surface photoreactions: exploring new pathways for sustainable chemistry. ChemPhotoChem 7, e202300069 (2023).García‐Fresnadillo, D. Singlet oxygen photosensitizing materials for point‐of‐use water disinfection with solar reactors. ChemPhotoChem 2, 512–534 (2018).Article 

Google Scholar 
Kalaitzakis, D., Sofiadis, M., Tsopanakis, V., Montagnon, T. & Vassilikogiannakis, G. Merging singlet-oxygen induced furan oxidations with organocatalysis: synthesis of enantiopure cyclopentanones and hydrindanes. Org. Biomol. Chem. 18, 2817–2822 (2020).Article 
CAS 
PubMed 

Google Scholar 
Bayer, P., Pérez‐Ruiz, R. & Jacobi von Wangelin, A. Stereoselective photooxidations by the schenck ene reaction. ChemPhotoChem 2, 559–570 (2018).Article 
CAS 

Google Scholar 
Ghogare, A. A. & Greer, A. Using singlet oxygen to synthesize natural products and drugs. Chem. Rev. 116, 9994–10034 (2016).Article 
CAS 
PubMed 

Google Scholar 
Montagnon, T., Kalaitzakis, D., Triantafyllakis, M., Stratakis, M. & Vassilikogiannakis, G. Furans and singlet oxygen – why there is more to come from this powerful partnership. Chem. Commun. 50, 15480–15498 (2014).Article 
CAS 

Google Scholar 
Li, Z. et al. Photoswitchable diarylethenes: from molecular structures to biological applications. Coord. Chem. Rev. 497, 215451 (2023).Article 
CAS 

Google Scholar 
Pham, T. C., Nguyen, V.-N., Choi, Y., Lee, S. & Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 121, 13454–13619 (2021).Article 
CAS 
PubMed 

Google Scholar 
Liu, J. et al. Recent progress in the development of multifunctional nanoplatform for precise tumor phototherapy. Adv. Healthc. Mater. 10, 2001207 (2021).Article 
CAS 

Google Scholar 
Li, X., Lee, S. & Yoon, J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev. 47, 1174–1188 (2018).Article 
CAS 
PubMed 

Google Scholar 
Bonnet, S. Why develop photoactivated chemotherapy? Dalton Trans. 47, 10330–10343 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wu, W., Shao, X., Zhao, J. & Wu, M. Controllable photodynamic therapy implemented by regulating singlet oxygen efficiency. Adv. Sci. Sci. 4, 1700113 (2017).Article 

Google Scholar 
Li, X. et al. A tumor-pH-responsive supramolecular photosensitizer for activatable photodynamic therapy with minimal in vivo skin phototoxicity. Theranostics 7, 2746–2756 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nomoto, T. et al. Calcium phosphate-based organic–inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy. Biomater. Sci. 4, 826–838 (2016).Article 
CAS 
PubMed 

Google Scholar 
Chen, W.-H. et al. Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomater 117, 54–65 (2017).Article 
CAS 

Google Scholar 
Tong, H. et al. Glutathione activatable photosensitizer‐conjugated pseudopolyrotaxane nanocarriers for photodynamic theranostics. Small 12, 6223–6232 (2016).Article 
CAS 
PubMed 

Google Scholar 
Fan, H. et al. A smart photosensitizer–manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells. Angew. Chem. Int. Ed. 55, 5477–5482 (2016).Article 
CAS 

Google Scholar 
Liu, F., Ma, Y., Xu, L., Liu, L. & Zhang, W. Redox-responsive supramolecular amphiphiles constructed via host–guest interactions for photodynamic therapy. Biomater. Sci. 3, 1218–1227 (2015).Article 
CAS 
PubMed 

Google Scholar 
Kim, W. L., Cho, H., Li, L., Kang, H. C. & Huh, K. M. Biarmed poly(ethylene glycol)-(pheophorbidea)2 conjugate as a bioactivatable delivery carrier for photodynamic therapy. Biomacromolecules 15, 2224–2234 (2014).Article 
CAS 
PubMed 

Google Scholar 
Cho, Y., Kim, H. & Choi, Y. A graphene oxide–photosensitizer complex as an enzyme-activatable theranostic agent. Chem. Commun. 49, 1202 (2013).Article 
CAS 

Google Scholar 
Yuan, Y., Kwok, R. T. K., Tang, B. Z. & Liu, B. Cancer therapy: smart probe for tracing cancer therapy: selective cancer cell detection, image-guided ablation, and prediction of therapeutic response in situ. Small 11, 4606–4606 (2015).Article 

Google Scholar 
Park, S. Y. et al. A smart polysaccharide/drug conjugate for photodynamic therapy. Angew. Chem. Int. Ed. 50, 1644–1647 (2011).Article 
CAS 

Google Scholar 
Erbas-Cakmak, S., Bozdemir, O. A., Cakmak, Y. & Akkaya, E. U. Proof of principle for a molecular 1:2 demultiplexer to function as an autonomously switching theranostic device. Chem. Sci. 4, 858–862 (2013).Article 
CAS 

Google Scholar 
Jiang, X.-J., Lo, P.-C., Yeung, S.-L., Fong, W.-P. & Ng, D. K. P. A pH-responsive fluorescence probe and photosensitiser based on a tetraamino silicon(iv) phthalocyanine. Chem. Commun. 46, 3188 (2010).Article 
CAS 

Google Scholar 
Ozlem, S. & Akkaya, E. U. Thinking outside the silicon box: molecular AND logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. J. Am. Chem. Soc. 131, 48–49 (2008).Article 

Google Scholar 
Liu, G. et al. A highly efficient supramolecular photoswitch for singlet oxygen generation in water. Chem. Commun. 52, 7966–7969 (2016).Article 
CAS 

Google Scholar 
Hou, L., Zhang, X., Pijper, T. C., Browne, W. R. & Feringa, B. L. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches. J. Am. Chem. Soc. 136, 910–913 (2014).Article 
CAS 
PubMed 

Google Scholar 
Cló, E., Snyder, J. W., Voigt, N. V., Ogilby, P. R. & Gothelf, K. V. DNA-programmed control of photosensitized singlet oxygen production. J. Am. Chem. Soc. 128, 4200–4201 (2006).Article 
PubMed 

Google Scholar 
Pairault, N. et al. Rotaxane-based architectures for biological applications. C. R. Chim. 19, 103–112 (2016).Article 
CAS 

Google Scholar 
Riebe, J. & Niemeyer, J. Mechanically interlocked molecules for biomedical applications. Eur. J. Org. Chem. 2021, 5106–5116 (2021).Article 
CAS 

Google Scholar 
Yu, G., Yung, B. C., Zhou, Z., Mao, Z. & Chen, X. Artificial molecular machines in nanotheranostics. ACS Nano 12, 7–12 (2017).Article 
PubMed 

Google Scholar 
Shao, L. et al. Constructing adaptive photosensitizers via supramolecular modification based on pillararene host–guest interactions. Angew. Chem. Int. Ed. 59, 11779–11783 (2020).Article 
CAS 

Google Scholar 
Khang, T. M. et al. Dual and sequential locked/unlocked photochromic effects on FRET controlled singlet oxygen processes by contracted/extended forms of diarylethene‐based [1]rotaxane nanoparticles. Small 19, 2205597 (2022).Shinohara, A., Pan, C., Wang, L. & Shinmori, H. Acid–base controllable singlet oxygen generation in supramolecular porphyrin–gold nanoparticle composites tethered by rotaxane linkers. J. Porph. Phthalocyan. 24, 171–180 (2020).Article 
CAS 

Google Scholar 
Hewson, S. W. & Mullen, K. M. Porphyrin‐containing rotaxane assemblies. Eur. J. Org. Chem. 2019, 3358–3370 (2019).Article 
CAS 

Google Scholar 
Taniguchi, M., Lindsey, J. S., Bocian, D. F. & Holten, D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – critical benchmark molecules in photochemistry and photosynthesis. J. Photochem. Photobiol. C: Photochem. Rev. 46, 100401 (2021).Article 
CAS 

Google Scholar 
Wilkinson, F., Helman, W. P. & Ross, A. B. Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 22, 113–262 (1993).Article 
CAS 

Google Scholar 
Chevalier, A., Renard, P.-Y. & Romieu, A. Straightforward synthesis of bioconjugatable azo dyes. Part 2: black hole quencher-2 (BHQ-2) and blackberry quencher 650 (BBQ-650) scaffolds. Tetrahedron Lett. 55, 6764–6768 (2014).Article 
CAS 

Google Scholar 
Konev, A. S., Khlebnikov, A. F., Levin, O. V., Lukyanov, D. A. & Zorin, I. M. Photocurrent in multilayered assemblies of porphyrin–fullerene covalent dyads: evidence for channels for charge transport. ChemSusChem 9, 676–686 (2016).Article 
CAS 
PubMed 

Google Scholar 
Feng, D.-J., Li, X.-Q., Wang, X.-Z., Jiang, X.-K. & Li, Z.-T. Highly stable pseudo[2]rotaxanes co-driven by crown ether–ammonium and donor–acceptor interactions. Tetrahedron 60, 6137–6144 (2004).Article 
CAS 

Google Scholar 
Entradas, T., Waldron, S. & Volk, M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J. Photochem. Photobiol. B: Biol. 204, 111787 (2020).Article 
CAS 

Google Scholar 
Gray, V. et al. Porphyrin–anthracene complexes: potential in triplet–triplet annihilation upconversion. J. Phys. Chem. C. 120, 19018–19026 (2016).Article 
CAS 

Google Scholar 
Bannwarth, C. et al. Extended tight‐binding quantum chemistry methods. WIREs Comput. Mol. Sci. 11, e1493 (2020).Article 

Google Scholar 
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).Article 
CAS 
PubMed 

Google Scholar 
Grimme, S., Bannwarth, C. & Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13, 1989–2009 (2017).Article 
CAS 
PubMed 

Google Scholar 
Spicher, S. & Grimme, S. Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew. Chem. Int. Ed. 59, 15665–15673 (2020).Article 
CAS 

Google Scholar 
Pracht, P., Bohle, F. & Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 22, 7169–7192 (2020).Article 
CAS 
PubMed 

Google Scholar 
Spicher, S. & Grimme, S. Single-point Hessian calculations for improved vibrational frequencies and rigid-rotor-harmonic-oscillator thermodynamics. J. Chem. Theory Comput. 17, 1701–1714 (2021).Article 
CAS 
PubMed 

Google Scholar 
Grimme, S., Brandenburg, J. G., Bannwarth, C. & Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 143, 054107 (2015).Article 
PubMed 

Google Scholar 
Klamt, A. The COSMO and COSMO‐RS solvation models. WIREs Comput. Mol. Sci. 1, 699–709 (2011).Article 
CAS 

Google Scholar 
Ehlert, S., Stahn, M., Spicher, S. & Grimme, S. Robust and efficient implicit solvation model for fast semiempirical methods. J. Chem. Theory Comput. 17, 4250–4261 (2021).Article 
CAS 
PubMed 

Google Scholar 
Balasubramani, S. G. et al. TURBOMOLE: modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 152, 184107 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles