Flux synthesis of two-dimensional covalent organic frameworks

Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).Article 
PubMed 

Google Scholar 
Ma, T. et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).Article 
CAS 
PubMed 

Google Scholar 
Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).Article 
CAS 
PubMed 

Google Scholar 
Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Q. et al. Covalent organic framework–based porous ionomers for high-performance fuel cells. Science 378, 181–186 (2022).Article 
CAS 
PubMed 

Google Scholar 
Qian, C. et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat. Rev. Chem. 6, 881–898 (2022).Article 
CAS 
PubMed 

Google Scholar 
Xu, H.-S. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 11, 1434 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alahakoon, S. B., Diwakara, S. D., Thompson, C. M. & Smaldone, R. A. Supramolecular design in 2D covalent organic frameworks. Chem. Soc. Rev. 49, 1344–1356 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gui, B., Ding, H., Cheng, Y., Mal, A. & Wang, C. Structural design and determination of 3D covalent organic frameworks. Trends Chem. 4, 437–450 (2022).Article 
CAS 

Google Scholar 
Guan, X., Chen, F., Fang, Q. & Qiu, S. Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 49, 1357–1384 (2020).Article 
CAS 
PubMed 

Google Scholar 
Sasmal, H. S., Kumar Mahato, A., Majumder, P. & Banerjee, R. Landscaping covalent organic framework nanomorphologies. J. Am. Chem. Soc. 144, 11482–11498 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, T. et al. Olefin-linked covalent organic frameworks: synthesis and applications. Dalton Trans. 52, 15178–15192 (2023).Article 
CAS 
PubMed 

Google Scholar 
Han, X. et al. Chiral covalent organic frameworks: design, synthesis and property. Chem. Soc. Rev. 49, 6248–6272 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z., Zhang, S., Chen, Y., Zhang, Z. & Ma, S. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 49, 708–735 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhang, T., Zhang, G. & Chen, L. 2D conjugated covalent organic frameworks: defined synthesis and tailor-made functions. Acc. Chem. Res. 55, 795–808 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, X. et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 48, 5266–5302 (2019).Article 
CAS 
PubMed 

Google Scholar 
Shi, Y., Yang, J., Gao, F. & Zhang, Q. Covalent organic frameworks: recent progress in biomedical applications. ACS Nano 17, 1879–1905 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lei, Z. et al. Cyanurate-linked covalent organic frameworks enabled by dynamic nucleophilic aromatic substitution. J. Am. Chem. Soc. 144, 17737–17742 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nat. Commun. 13, 100 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, X., Cui, Q., Chen, H. & Huang, N. Carborane-based three-dimensional covalent organic frameworks. J. Am. Chem. Soc. 145, 24202–24209 (2023).Article 
CAS 
PubMed 

Google Scholar 
Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhuang, X. et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 7, 4176–4181 (2016).Article 
CAS 

Google Scholar 
Fang, Q. et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5, 4503 (2014).Article 
PubMed 

Google Scholar 
Han, B. et al. Two-dimensional covalent organic frameworks with cobalt(II)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 143, 7104–7113 (2021).Article 
CAS 
PubMed 

Google Scholar 
Uribe-Romo, F. J. et al. A crystalline imine-linked 3D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009).Article 
CAS 
PubMed 

Google Scholar 
Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).Article 
CAS 
PubMed 

Google Scholar 
Biswal, B. P. et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135, 5328–5331 (2013).Article 
CAS 
PubMed 

Google Scholar 
Lu, J. et al. Large-scale synthesis of azine-linked covalent organic frameworks in water and promoted by water. N. J. Chem. 43, 6116–6120 (2019).Article 
CAS 

Google Scholar 
Maschita, J. et al. Ionothermal synthesis of imide-linked covalent organic frameworks. Angew. Chem. Int. Ed. 59, 15750–15758 (2020).Article 
CAS 

Google Scholar 
Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).Article 
CAS 

Google Scholar 
Díaz de Greñu, B. et al. Microwave-assisted synthesis of covalent organic frameworks: a review. ChemSusChem 14, 208–233 (2021).Article 
PubMed 

Google Scholar 
Zhao, W. et al. Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 1, 87–95 (2022).Article 

Google Scholar 
Zhang, M. et al. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. J. Am. Chem. Soc. 142, 9169–9174 (2020).Article 
CAS 
PubMed 

Google Scholar 
Qiu, J. et al. Syntheses of two- and three-dimensional covalent organic frameworks in deep eutectic solvents. Green. Chem. 22, 7537–7542 (2020).Article 
CAS 

Google Scholar 
Jiang, Y. et al. Green, scalable and morphology controlled synthesis of nanofibrous covalent organic frameworks and their nanohybrids through a vapor-assisted solid-state approach. J. Mater. Chem. A 2, 8201–8204 (2014).Article 
CAS 

Google Scholar 
Riley, B. J. et al. Molten salt reactor waste and effluent management strategies: a review. Nucl. Eng. Des. 345, 94–109 (2019).Article 
CAS 

Google Scholar 
Yang, B. J., Lu, W. Y., Zhang, J. L., Wang, J. Q. & Ma, E. Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses. Sci. Rep. 7, 11053 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, X., Fechler, N. & Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 42, 8237–8265 (2013).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat. Commun. 12, 1982 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z. et al. Modulating the interlayer stacking of covalent organic frameworks for efficient acetylene separation. Small 19, 2303684 (2023).Article 
CAS 

Google Scholar 
Zhang, P. et al. Melt polymerization synthesis of a class of robust self-shaped olefin-linked COF foams as high-efficiency separators. Sci. China Chem. 65, 1173–1184 (2022).Article 
CAS 

Google Scholar 
Zhang, P. et al. Fabricating industry-compatible olefin-linked COF resins for oxoanion pollutant scavenging. Angew. Chem. Int. Ed. 61, e202213247 (2022).Article 
CAS 

Google Scholar 
Wang, Z. et al. Kilogram-scale fabrication of a robust olefin-linked covalent organic framework for separating ethylene from a ternary C2 hydrocarbon mixture. J. Am. Chem. Soc. 145, 21483–21490 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Organic flux synthesis of covalent organic frameworks. Chem 9, 2178–2193 (2023).Article 
CAS 

Google Scholar 
Zhang, Y. et al. Solvent-free synthesis of C=N linked two-dimensional covalent organic frameworks. Macromol. Rapid Commun. 44, 2200722 (2023).Article 
CAS 

Google Scholar 
Li, S. et al. Direct construction of isomeric benzobisoxazole–vinylene-linked covalent organic frameworks with distinct photocatalytic properties. J. Am. Chem. Soc. 144, 13953–13960 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wei, J. et al. Rapid and selective removal of aristolochic acid I in natural products by vinylene-linked iCOF resins. J. Hazard. Mater. 461, 132140 (2024).Article 
CAS 
PubMed 

Google Scholar 
Wei, J. et al. Efficient selective removal of uremic toxin precursor by olefin-linked covalent organic frameworks for nephropathy treatment. Nat. Commun. 14, 2805 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, L. et al. Narrow-pore engineering of vinylene-linked covalent organic frameworks with weak interaction-triggered multiple responses. Angew. Chem. Int. Ed. 62, e202309125 (2023).Article 
CAS 

Google Scholar 
Chafiq, M., Chaouiki, A. & Ko, Y. G. Advances in COFs for energy storage devices: harnessing the potential of covalent organic framework materials. Energy Storage Mater. 63, 103014 (2023).Article 

Google Scholar 
Zhang, J. et al. Isoreticular series of 2-methylpyridine-mediated vinylene-linked covalent organic frameworks for efficient visible-light-driven thiocyanation. ACS Mater. Lett. 5, 2799–2806 (2023).Article 

Google Scholar 
Fu, J. et al. Boost of gas adsorption kinetics of covalent organic frameworks via ionic liquid solution process. Small 19, 2302570 (2023).Article 
CAS 

Google Scholar 
Jrad, A., Olson, M. A. & Trabolsi, A. Molecular design of covalent organic frameworks for seawater desalination: a state-of-the-art review. Chem 9, 1413–1451 (2023).Article 
CAS 

Google Scholar 
Wang, M. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5, 518–526 (2022).Article 

Google Scholar 
Li, H., Dilipkumar, A., Abubakar, S. & Zhao, D. Covalent organic frameworks for CO2 capture: from laboratory curiosity to industry implementation. Chem. Soc. Rev. 52, 6294–6329 (2023).Article 
CAS 
PubMed 

Google Scholar 
Segura, J. L., Mancheño, M. J. & Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45, 5635–5671 (2016).Article 
CAS 
PubMed 

Google Scholar 
Osterrieth, J. W. M. et al. How reproducible are surface areas calculated from the BET equation? Adv. Mater. 34, 2201502 (2022).Article 
CAS 

Google Scholar 
Fan, W. et al. Regulating C2H2 and CO2 storage and separation through pore environment modification in a microporous Ni-MOF. ACS Sustain. Chem. Eng. 7, 2134–2140 (2019).Article 
CAS 

Google Scholar 
Liu, L. et al. Robustness, selective gas separation, and nitrobenzene sensing on two isomers of cadmium metal–organic frameworks containing various metal–O–metal chains. Inorg. Chem. 57, 12961–12968 (2018).Article 
CAS 
PubMed 

Google Scholar 
He, Y. et al. A microporous lanthanide–tricarboxylate framework with the potential for purification of natural gas. Chem. Commun. 48, 10856–10858 (2012).Article 
CAS 

Google Scholar 
Wang, Y. et al. A ligand conformation preorganization approach to construct a copper–hexacarboxylate framework with a novel topology for selective gas adsorption. Inorg. Chem. Front. 6, 263–270 (2019).
Google Scholar 

Hot Topics

Related Articles