Utilization of RESOLV with polymer to produce prazosin hydrochloride nanoparticles and optimization of the process parameters

Bagheri, H., Mansoori, G. A. & Hashemipour, H. A novel approach to predict drugs solubility in supercritical solvents for RESS process using various cubic EoS-mixing rule. J. Mol. Liq. 261, 174–188. https://doi.org/10.1016/j.molliq.2018.03.081 (2018).Article 
CAS 

Google Scholar 
Sodeifian, G., Sajadian, S. A., Ardestani, N. S. & Razmimanesh, F. Production of Loratadine drug nanoparticles using ultrasonic-assisted Rapid expansion of supercritical solution into aqueous solution (US-RESSAS). J. Supercrit. Fluids 147, 241–253 (2019).Article 
CAS 

Google Scholar 
Brogden, R., Heel, R., Speight, T. & Avery, G. Prazosin: A review of its pharmacological properties and therapeutic efficacy in hypertension. Drugs 14, 163–197 (1977).Article 
CAS 
PubMed 

Google Scholar 
Sreedhar, K., Sastry, C., Reddy, M. N. & Sankar, D. Spectrophotometric methods for the determination of prazosin hydrochloride in tablets. Talanta 43, 1847–1855. https://doi.org/10.1016/0039-9140(96)01951-0 (1996).Article 
CAS 
PubMed 

Google Scholar 
Liu, L. & Zhu, S. Preparation and characterization of inclusion complexes of prazosin hydrochloride with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J. Pharm. Biomed. Anal. 40, 122–127. https://doi.org/10.1016/j.jpba.2005.06.022 (2006).Article 
CAS 
PubMed 

Google Scholar 
Sodeifian, G., Alwi, R. S., Razmimanesh, F. & Sodeifian, F. Solubility of prazosin hydrochloride (alpha blocker antihypertensive drug) in supercritical CO2: Experimental and thermodynamic modelling. J. Mol. Liquids https://doi.org/10.1016/j.molliq.2022.119689 (2022).Article 

Google Scholar 
Sodeifian, G. & Sajadian, S. A. Utilization of ultrasonic-assisted RESOLV (US-RESOLV) with polymeric stabilizers for production of amiodarone hydrochloride nanoparticles: Optimization of the process parameters. Chem. Eng. Res. Des. 142, 268–284. https://doi.org/10.1016/j.cherd.2018.12.020 (2019).Article 
CAS 

Google Scholar 
Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharm. Rev. 53, 283–318 (2001).CAS 
PubMed 

Google Scholar 
Stolnik, S., Illum, L. & Davis, S. Long circulating microparticulate drug carriers. Adv. Drug Deliv. Rev. 64, 290–301. https://doi.org/10.1016/j.addr.2012.09.029 (2012).Article 

Google Scholar 
Leuner, C. & Dressman, J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50, 47–60. https://doi.org/10.1016/S0939-6411(00)00076-X (2000).Article 
CAS 
PubMed 

Google Scholar 
Kayser, O., Lemke, A. & Hernandez-Trejo, N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol. 6, 3–5. https://doi.org/10.2174/1389201053167158 (2005).Article 
CAS 
PubMed 

Google Scholar 
Pathak, P., Meziani, M. J., Desai, T. & Sun, Y.-P. Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J. Supercrit. Fluids 37, 279–286. https://doi.org/10.1016/j.supflu.2005.09.005 (2006).Article 
CAS 

Google Scholar 
Atila, C., Yıldız, N. & Çalımlı, A. Particle size design of digitoxin in supercritical fluids. J. Supercrit. Fluids 51, 404–411. https://doi.org/10.1016/j.supflu.2009.10.006 (2010).Article 
CAS 

Google Scholar 
Bolten, D. & Türk, M. Micronisation of carbamazepine through rapid expansion of supercritical solution (RESS). J. Supercrit. Fluids 62, 32–40. https://doi.org/10.1016/j.supflu.2011.06.014 (2012).Article 
CAS 

Google Scholar 
Cheng, S.-H., Yang, F.-C., Yang, Y.-H., Hu, C.-C. & Chang, W.-T. Measurements and modeling of the solubility of ergosterol in supercritical carbon dioxide. J. Taiwan Inst. Chem. Eng. 44, 19–26. https://doi.org/10.1016/j.jtice.2012.09.001 (2013).Article 
CAS 

Google Scholar 
Ardestani, N. S., Sodeifian, G. & Sajadian, S. A. Preparation of phthalocyanine green nano pigment using supercritical CO2 gas antisolvent (GAS): Experimental and modeling. Heliyon 6, e04947 (2020).Article 

Google Scholar 
Franco, P. & De Marco, I. Nanoparticles and nanocrystals by supercritical CO2-assisted techniques for pharmaceutical applications: A review. Appl. Sci. 11, 1476. https://doi.org/10.3390/app11041476 (2021).Article 
CAS 

Google Scholar 
Razmimanesh, F., Sodeifian, G. & Sajadian, S. A. An investigation into Sunitinib malate nanoparticle production by US-RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution. J. Supercrit. Fluids 170, 105163. https://doi.org/10.1016/j.supflu.2021.105163 (2021).Article 
CAS 

Google Scholar 
Sodeifian, G., Ardestani, N. S., Sajadian, S. A. & Ghorbandoost, S. Application of supercritical carbon dioxide to extract essential oil from Cleome coluteoides Boiss: experimental, response surface and grey wolf optimization methodology. J. Supercrit. Fluids 114, 55–63. https://doi.org/10.1016/j.supflu.2016.04.006 (2016).Article 
CAS 

Google Scholar 
Sodeifian, G., Sajadian, S. A. & Ardestani, N. S. Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: process optimization and oil properties. J. Supercrit. Fluids 119, 139–149. https://doi.org/10.1016/j.supflu.2016.08.019 (2017).Article 
CAS 

Google Scholar 
Sodeifian, G., Sajadian, S. A. & Ardestani, N. S. Extraction of Dracocephalum kotschyi Boiss using supercritical carbon dioxide: Experimental and optimization. J. Supercrit. Fluids 107, 137–144. https://doi.org/10.1016/j.supflu.2015.09.005 (2016).Article 
CAS 

Google Scholar 
Sodeifian, G., Sajadian, S. A. & Ardestani, N. S. Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri: Application of simulated annealing (SA) algorithm. J. Supercrit. Fluids 127, 146–157. https://doi.org/10.1016/j.supflu.2017.04.007 (2017).Article 
CAS 

Google Scholar 
Sodeifian, G. & Sajadian, S. A. Investigation of essential oil extraction and antioxidant activity of Echinophora platyloba DC using supercritical carbon dioxide. J. Supercrit. Fluids 121, 52–62. https://doi.org/10.1016/j.supflu.2016.11.014 (2017).Article 
CAS 

Google Scholar 
Sodeifian, G., Sajadian, S. A. & Honarvar, B. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide. Nat. Prod. Res. https://doi.org/10.1080/14786419.2017.1361954 (2017).Article 
PubMed 

Google Scholar 
Sodeifian, G., Ardestani, N. S., Sajadian, S. A. & Moghadamian, K. Properties of Portulaca oleracea seed oil via supercritical fluid extraction: Experimental and optimization. J. Supercrit. Fluids 135, 34–44. https://doi.org/10.1016/j.supflu.2017.12.026 (2018).Article 
CAS 

Google Scholar 
Sodeifian, G., Ghorbandoost, S., Sajadian, S. A. & Ardestani, N. S. Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: Experimental and modeling. J. Supercrit. Fluids 110, 265–274. https://doi.org/10.1016/j.supflu.2015.12.004 (2016).Article 
CAS 

Google Scholar 
Honarvar, B., Sajadian, S. A., Rojas, A., Galotto, M. J. & Jouyban, A. Solubility and thermodynamic modeling of sildenafil citrate in supercritical carbon dioxide. Fluid Phase Equilib. 566, 113677. https://doi.org/10.1016/j.fluid.2022.113677 (2023).Article 
CAS 

Google Scholar 
Saadati Ardestani, N., Sajadian, S. A., Rojas, A., Alwi, R. S. & Estévez, L. A. Solubility of famotidine in supercritical carbon dioxide: Experimental measurement and thermodynamic modeling. J. Supercrit. Fluids 201, 106031. https://doi.org/10.1016/j.supflu.2023.106031 (2023).Article 
CAS 

Google Scholar 
Bazaei, M., Honarvar, B., Esfandiari, N., Sajadian, S. A. & Aboosadi, Z. A. Measurement and thermodynamic modeling of solubility of Erlotinib hydrochloride, as an anti-cancer drug, in supercritical carbon dioxide. Fluid Phase Equilib. https://doi.org/10.1016/j.fluid.2023.113877 (2023).Article 

Google Scholar 
Alwi, R. S. et al. Experimental study and thermodynamic modeling of clonazepam solubility in supercritical carbon dioxide. Fluid Phase Equilib. https://doi.org/10.1016/j.fluid.2023.113880 (2023).Article 

Google Scholar 
Sajadian, S. A., Peyrovedin, H., Zomorodian, K. & Khorram, M. Using the supercritical carbon dioxide as the solvent of Nystatin: Studying the effect of co-solvent, experimental and correlating. J. Supercrit. Fluids 194, 105858. https://doi.org/10.1016/j.supflu.2023.105858 (2023).Article 
CAS 

Google Scholar 
Esfandiari, N. et al. Solubility measurement of verapamil for the preparation of developed nanomedicines using supercritical fluid. Sci. Rep. 13, 17089. https://doi.org/10.1038/s41598-023-44280-7 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Askarizadeh, M., Esfandiari, N., Honarvar, B., Sajadian, S. A. & Azdarpour, A. Kinetic modeling to explain the release of medicine from drug delivery systems. ChemBioEng Reviews https://doi.org/10.1002/cben.202300027 (2023).Article 

Google Scholar 
Sodeifian, G., Sajadian, S. A. & Daneshyan, S. Preparation of Aprepitant nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC). J. Supercrit. Fluids 140, 72–84. https://doi.org/10.1016/j.supflu.2018.06.009 (2018).Article 
CAS 

Google Scholar 
Sodeifian, G., Sajadian, S. A., Ardestani, N. S. & Razmimanesh, F. Production of Loratadine drug nanoparticles using ultrasonic-assisted Rapid expansion of supercritical solution into aqueous solution (US-RESSAS). J. Supercrit. Fluids https://doi.org/10.1016/j.supflu.2018.11.007 (2018).Article 

Google Scholar 
Sajadian, S. A. Measuring and Modeling the Solubility of Pharmaceutical Substances for the Production of Nanoparticles Using Supercritical Fluid and Ultrasound Technology. PhD thesis, 211 (2018).Sodeifian, G. & Sajadian, S. A. Utilization of ultrasonic-assisted RESOLV with polymeric stabilizers for production of amiodarone hydrochloride nanoparticles: optimization of the process parameters. Chem. Eng. Res. Des. 142, 268–284. https://doi.org/10.1016/j.cherd.2018.12.020 (2019).Article 
CAS 

Google Scholar 
Ameri, A., Sodeifian, G. & Sajadian, S. A. Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: impacts of process parameters. J. Supercrit. Fluids https://doi.org/10.1016/j.supflu.2020.104892 (2020).Article 

Google Scholar 
Bouledjouidja, A., Masmoudi, Y., Sergent, M. & Badens, E. Effect of operational conditions on the supercritical carbon dioxide impregnation of anti-inflammatory and antibiotic drugs in rigid commercial intraocular lenses. J. Supercrit. Fluids 130, 63–75. https://doi.org/10.1016/j.supflu.2017.07.015 (2017).Article 
CAS 

Google Scholar 
Sodeifian, G., Sajadian, S. A. & Ardestani, N. S. Determination of solubility of Aprepitant (an antiemetic drug for chemotherapy) in supercritical carbon dioxide: empirical and thermodynamic models. J. Supercrit. Fluids 128, 102–111. https://doi.org/10.1016/j.supflu.2017.05.019 (2017).Article 
CAS 

Google Scholar 
Chen, B.-Q., Kankala, R. K., Wang, S.-B. & Chen, A.-Z. Continuous nanonization of lonidamine by modified-rapid expansion of supercritical solution process. J. Supercrit. Fluids 133, 486–493. https://doi.org/10.1016/j.supflu.2017.11.016 (2018).Article 
CAS 

Google Scholar 
Kim, J. H., Ganapathy, H. S., Hong, S.-S., Gal, Y.-S. & Lim, K. T. Preparation of polyacrylonitrile nanofibers as a precursor of carbon nanofibers by supercritical fluid process. J. Supercrit. Fluids 47, 103–107. https://doi.org/10.1016/j.supflu.2008.05.011 (2008).Article 
CAS 

Google Scholar 
Sane, A. & Limtrakul, J. Formation of retinyl palmitate-loaded poly (l-lactide) nanoparticles using rapid expansion of supercritical solutions into liquid solvents (RESOLV). J. Supercrit. Fluids 51, 230–237. https://doi.org/10.1016/j.supflu.2009.09.003 (2009).Article 
CAS 

Google Scholar 
Meziani, M. J. et al. Polymeric nanofibers from rapid expansion of supercritical solution. Ind. Eng. Chem. Res. 44, 4594–4598. https://doi.org/10.1021/ie048796o (2005).Article 
CAS 

Google Scholar 
Dalvi, S. V., Azad, M. A. & Dave, R. Precipitation and stabilization of ultrafine particles of Fenofibrate in aqueous suspensions by RESOLV. Powder Technol. 236, 75–84. https://doi.org/10.1016/j.powtec.2012.05.038 (2013).Article 
CAS 

Google Scholar 
Pathak, P., Prasad, G. L., Meziani, M. J., Joudeh, A. A. & Sun, Y.-P. Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation. Langmuir 23, 2674–2679. https://doi.org/10.1021/la062739d (2007).Article 
CAS 
PubMed 

Google Scholar 
Xiang, S.-T., Chen, B.-Q., Kankala, R. K., Wang, S.-B. & Chen, A.-Z. Solubility measurement and RESOLV-assisted nanonization of gambogic acid in supercritical carbon dioxide for cancer therapy. J. Supercrit. Fluids 150, 147–155. https://doi.org/10.1016/j.supflu.2019.04.008 (2019).Article 
CAS 

Google Scholar 
Ganapathy, H. S., Kim, J. H., Hong, S.-S. & Lim, K. T. Preparation of semi-conducting polymeric nanoparticles by supercritical carbon dioxide RESOLV process. J. Nanosci. Nanotechnol. 8, 4707–4710. https://doi.org/10.1166/jnn.2008.IC13 (2008).Article 
CAS 
PubMed 

Google Scholar 
Reverchon, E. & Adami, R. Nanomaterials and supercritical fluids. J. Supercrit. Fluids 37, 1–22. https://doi.org/10.1016/j.supflu.2005.08.003 (2006).Article 
CAS 

Google Scholar 
Byrappa, K., Ohara, S. & Adschiri, T. Nanoparticles synthesis using supercritical fluid technology–towards biomedical applications. Adv. Drug Deliv. Rev. 60, 299–327. https://doi.org/10.1080/00986445.2021.1983545 (2008).Article 
CAS 
PubMed 

Google Scholar 
Rao, J. P. & Geckeler, K. E. Polymer nanoparticles: Preparation techniques and size-control parameters. Progress Polymer Sci. 36, 887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001 (2011).Article 
CAS 

Google Scholar 
Esfandiari, N. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide. J. Supercrit. Fluids 100, 129–141. https://doi.org/10.1016/j.supflu.2014.12.028 (2015).Article 
CAS 

Google Scholar 
Meziani, M. J. & Sun, Y.-P. Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution. J. Am. Chem. Soc. 125, 8015–8018. https://doi.org/10.1021/ja030104k (2003).Article 
CAS 
PubMed 

Google Scholar 
Pathak, P., Meziani, M. J., Desai, T. & Sun, Y.-P. Nanosizing drug particles in supercritical fluid processing. J. Am. Chem. Soc. 126, 10842–10843. https://doi.org/10.1021/ja046914t (2004).Article 
CAS 
PubMed 

Google Scholar 
Sane, A. & Thies, M. C. The formation of fluorinated tetraphenylporphyrin nanoparticles via rapid expansion processes: RESS vs RESOLV. J. Phys. Chem. B 109, 19688–19695. https://doi.org/10.1021/jp0581072 (2005).Article 
CAS 
PubMed 

Google Scholar 
Pathak, P. et al. Supercritical fluid processing of drug nanoparticles in stable suspension. J. Nanosci. Nanotechnol. 7, 2542–2545. https://doi.org/10.1166/jnn.2007.449 (2007).Article 
CAS 
PubMed 

Google Scholar 
Salinas-Hernández, R. et al. Chitin microstructure formation by rapid expansion techniques with supercritical carbon dioxide. Ind. Eng. Chem. Res. 48, 769–778. https://doi.org/10.1021/ie800084x (2009).Article 
CAS 

Google Scholar 
Zabihi, F., Otadi, M. & Mirzajanzadeh, M. Cortisone acetate nano-particles formation by rapid expansion of a supercritical solution in to a liquid solvent (resolve method): An operational condition optimization study. Proceeding of ICNB, IEEE, Hong Kong, Sep, 28–30 (2010).Songtipya, L. & Sane, A. Effect of concentration and degree of saturation on co-precipitation of catechin and poly (l-lactide) by the RESOLV process. J. Supercrit. Fluids 75, 72–80. https://doi.org/10.1016/j.supflu.2012.12.024 (2013).Article 
CAS 

Google Scholar 
Saelo, S., Assatarakul, K., Sane, A. & Suppakul, P. Fabrication of novel bioactive cellulose-based films derived from caffeic acid phenethyl ester-loaded nanoparticles via a rapid expansion process: RESOLV. J. Agric. food Chem. 64, 6694–6707. https://doi.org/10.1021/acs.jafc.6b02197 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sodeifian, G., Alwi, R. S., Razmimanesh, F. & Sodeifian, F. Solubility of prazosin hydrochloride (alpha blocker antihypertensive drug) in supercritical CO2: Experimental and thermodynamic modelling. J. Mol. Liquids 362, 119689. https://doi.org/10.1016/j.molliq.2022.119689 (2022).Article 
CAS 

Google Scholar 
Wójcik-Pastuszka, D. et al. Evaluation of the release kinetics of a pharmacologically active substance from model intra-articular implants replacing the cruciate ligaments of the knee. Materials 12, 1202. https://doi.org/10.3390/ma12081202 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, L. & Zhu, S. A study on the supramolecular structure of inclusion complex of β-cyclodextrin with prazosin hydrochloride. Carbohydr. Polymers 68, 472–476. https://doi.org/10.1016/j.carbpol.2006.11.007 (2007).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles