A spatial expression atlas of the adult human proximal small intestine

Moor, A. E., Harnik, Y., Ben-Moshe, S., Massasa, E. E., Rozenberg, M., Eilam, R., Bahar Halpern, K. & Itzkovitz, S. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167.e15 (2018).Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021).Article 
CAS 
PubMed 

Google Scholar 
Bonis, V., Rossell, C. & Gehart, H. The intestinal epithelium—fluid fate and rigid structure from crypt bottom to villus tip. Front. Cell Dev. Biol. 9, 661931 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Manco, R. et al. Clump sequencing exposes the spatial expression programs of intestinal secretory cells. Nat. Commun. 12, 3074 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bahar Halpern, K. et al. Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat. Commun. 11, 1936 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shoshkes-Carmel, M. et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557, 242–246 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McCarthy, N. et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26, 391–402 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Valenta, T. et al. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 15, 911–918 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).Article 
CAS 
PubMed 

Google Scholar 
Bujko, A. et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J. Exp. Med. 215, 441–458 (2017).Article 
PubMed 

Google Scholar 
Brandtzaeg, P. et al. The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171, 45–87 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Beumer, J. et al. BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Rep. 38, 110438 (2022).Article 
CAS 
PubMed 

Google Scholar 
Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Burclaff, J. et al. A proximal-to-distal survey of healthy adult human small intestine and colon epithelium by single-cell transcriptomics. Cell. Mol. Gastroenterol. Hepatol. https://doi.org/10.1016/j.jcmgh.2022.02.007 (2022).Holloway, E. M. et al. Mapping development of the human intestinal niche at single-cell resolution. Cell Stem Cell 28, 568–580 (2021).Article 
CAS 
PubMed 

Google Scholar 
Egozi, A. et al. Single-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis. PLoS Biol. 21, e3002124 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hickey, J. W. et al. Organization of the human intestine at single-cell resolution. Nature 619, 572–584 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zilbauer, M. et al. A Roadmap for the Human Gut Cell Atlas. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-023-00784-1 (2023).Forrest, A. R. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Bausch-Fluck, D. et al. The in silico human surfaceome. Proc. Natl Acad. Sci. USA 115, E10988–E10997 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tuganbaev, T. et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 182, 1441–1459 (2020).Article 
CAS 
PubMed 

Google Scholar 
Harnik, Y. et al. Spatial discordances between mRNAs and proteins in the intestinal epithelium. Nat. Metab. 3, 1680–1693 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kelly, J., Weir, D. G. & Feighery, C. Differential expression of HLA-D gene products in the normal and coeliac small bowel. Tissue Antigens 31, 151–160 (1988).Article 
CAS 
PubMed 

Google Scholar 
Scott, H., Solheim, B. G., Brandtzaeg, P. & Thorsby, E. HLA-DR-like antigens in the epithelium of the human small intestine. Scand. J. Immunol. 12, 77–82 (1980).Article 
CAS 
PubMed 

Google Scholar 
Mansbach, C. M. & Siddiqi, S. A. The biogenesis of chylomicrons. Annu. Rev. Physiol. 72, 315 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mahmood Hussain, M. A proposed model for the assembly of chylomicrons. Atherosclerosis 148, 1–15 (2000).Article 
CAS 

Google Scholar 
Chung, J. et al. LDAF1 and seipin form a lipid droplet assembly complex. Dev. Cell 51, 551–563 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hung, Y.-H., Carreiro, A. L. & Buhman, K. K. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim. Biophys. Acta 1862, 600–614 (2017).Article 
CAS 
PubMed Central 

Google Scholar 
Barker, H. G., Malm, J. R. & Reemtsma, K. Comparative fat and fatty acid intestinal absorption test utilizing radioiodine labeling; results in normal subjects. Proc. Soc. Exp. Biol. Med. 92, 471–474 (1956).Article 
CAS 
PubMed 

Google Scholar 
Lawen, A. & Lane, D. J. R. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid. Redox Signal. 18, 2473–2507 (2013).Article 
CAS 
PubMed 

Google Scholar 
Moor, A. E. et al. Global mRNA polarization regulates translation efficiency in the intestinal epithelium. Science 357, 1299–1303 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zwick, R. K. et al. Epithelial zonation along the mouse and human small intestine defines five discrete metabolic domains. Nat. Cell Biol. https://doi.org/10.1038/s41556-023-01337-z (2024).Meran, L., Baulies, A. & Li, V. S. W. Intestinal stem cell niche: the extracellular matrix and cellular components. Stem Cells Int. 2017, e7970385 (2017).Article 

Google Scholar 
Palikuqi, B. et al. Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell 29, 1262–1272 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Niec, R. E. et al. Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell 29, 1067–1082 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bernier-Latmani, J. et al. ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nat. Commun. 13, 3983 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Santaolalla, R., Fukata, M. & Abreu, M. T. Innate immunity in the small intestine. Curr. Opin. Gastroenterol. 27, 125–131 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Moghaddami, M., Cummins, A. & Mayrhofer, G. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115, 1414–1425 (1998).Article 
CAS 
PubMed 

Google Scholar 
Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359 (2006).Article 
CAS 
PubMed 

Google Scholar 
Brügger, M. D. & Basler, K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol. 33, 834–849 (2023).Article 
PubMed 

Google Scholar 
Chiquet-Ehrismann, R. Tenascins. Int. J. Biochem. Cell Biol. 36, 986–990 (2004).Article 
CAS 
PubMed 

Google Scholar 
Treuting, P. M., Arends, M. J. & Dintzis, S. M. in Comparative Anatomy and Histology (Second Edition) (eds. Treuting, P. M. et al.) Ch. 11, 191–211 (Academic, 2018). https://doi.org/10.1016/B978-0-12-802900-8.00011-7.Subiran Adrados, C., Yu, Q., Bolaños Castro, L. A., Rodriguez Cabrera, L. A. & Yun, M. H. Salamander-Eci: an optical clearing protocol for the three-dimensional exploration of regeneration. Dev. Dyn. 250, 902–915 (2021).Article 
PubMed 

Google Scholar 
Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-019-0134-x (2019).Trautmann, A. Extracellular ATP in the immune system: more than just a ‘danger signal’. Sci. Signal. 2, pe6 (2009).Article 
PubMed 

Google Scholar 
Mabley, J. G. et al. Inosine reduces inflammation and improves survival in a murine model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G138–G144 (2003).Article 
CAS 
PubMed 

Google Scholar 
Liu, T. et al. ADAMDEC1 promotes skin inflammation in rosacea via modulating the polarization of M1 macrophages. Biochem. Biophys. Res. Commun. 521, 64–71 (2020).Article 
CAS 
PubMed 

Google Scholar 
O’Shea, N. R. et al. Critical role of the disintegrin metalloprotease ADAM-like decysin-1 [ADAMDEC1] for intestinal immunity and inflammation. J. Crohns Colitis 10, 1417–1427 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Matsumoto, T. et al. Serrated adenoma in familial adenomatous polyposis: relation to germline APC gene mutation. Gut 50, 402–404 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Snover, D. C. Update on the serrated pathway to colorectal carcinoma. Hum. Pathol. 42, 1–10 (2011).Article 
PubMed 

Google Scholar 
Rubio, C. A. Serrated adenoma of the duodenum. J. Clin. Pathol. 57, 1219–1221 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 8, 1743–1758 (2013).Article 
PubMed 

Google Scholar 
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
CAS 
PubMed 

Google Scholar 
Bagnoli, J. W. et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat. Commun. 9, 2937 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Kohen, R. et al. UTAP: User-friendly Transcriptome Analysis Pipeline. BMC Bioinform. 20, 154 (2019).Article 

Google Scholar 
Elinger, D., Gabashvili, A. & Levin, Y. Suspension trapping (S-Trap) is compatible with typical protein extraction buffers and detergents for bottom-up proteomics. J. Proteome Res. 18, 1441–1445 (2019).Article 
CAS 
PubMed 

Google Scholar 
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).Article 
CAS 
PubMed 

Google Scholar 
Gu, Z. Complex heatmap visualization. iMeta 1, e43 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances circular visualization in R. Bioinform. Oxf. Engl. 30, 2811–2812 (2014).Article 
CAS 

Google Scholar 
Ni, Z. et al. SpotClean adjusts for spot swapping in spatial transcriptomics data. Nat. Commun. 13, 2971 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).Article 
MathSciNet 

Google Scholar 
Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022).Article 
CAS 
PubMed 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).MathSciNet 

Google Scholar 
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).Article 
CAS 
PubMed 

Google Scholar 
Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hickey, J. W., Tan, Y., Nolan, G. P. & Goltsev, Y. Strategies for accurate cell type identification in CODEX multiplexed imaging data. Front. Immunol. 12, 727626 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ramilowski, J. A. et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat. Commun. 6, 7866 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Shannon, C. E. The mathematical theory of communication. 1963. MD Comput. 14, 306–317 (1997).CAS 
PubMed 

Google Scholar 
Harnik, Y. et al. Spatial transcriptomics data for ‘A spatial expression atlas of the adult human proximal small intestine’. Zenodo https://doi.org/10.5281/zenodo.10715015 (2024).Harnik, Y. et al. Human villus zonation segmental tables for ‘A spatial expression atlas of the adult human proximal small intestine’. Zenodo https://doi.org/10.5281/zenodo.11490477 (2024).Harnik, Y. et al. LCM RNA-seq and proteomics raw data for ‘A spatial expression atlas of the adult human proximal small intestine’. Zenodo https://doi.org/10.5281/zenodo.10715015 (2024).Harnik, Y. et al. CODEX data for ‘A spatial expression atlas of the adult human proximal small intestine’. Zenodo https://doi.org/10.5281/zenodo.10724499 (2024).Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).Article 
PubMed 

Google Scholar 
Wang, Y. et al. Bile acid-dependent transcription factors and chromatin accessibility determine regional heterogeneity of intestinal antimicrobial peptides. Nat. Commun. 14, 5093 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hortsch, M. The Michigan Histology website as an example of a free anatomical resource serving learners and educators worldwide. Anat. Sci. Educ. 16, 363–371 (2023).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles