Visible and near-infrared light-induced photoclick reactions

Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).Article 
CAS 

Google Scholar 
Tornøe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).Article 
PubMed 

Google Scholar 
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).Article 
CAS 

Google Scholar 
Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).Article 
CAS 
PubMed 

Google Scholar 
Turro, N. J., Ramamurthy, V. & Scaiano, J. C. Modern molecular photochemistry of organic molecules. Photochem. Photobiol. https://doi.org/10.1111/j.1751-1097.2012.01178.x (2012).Montalti, M., Credi, A., Prodi, L. & Gandolfi, M. T. Handbook of Photochemistry (CRC, 2006).Kumar, G. S. & Lin, Q. Light-triggered click chemistry. Chem. Rev. 121, 6991–7031 (2021).Article 
CAS 
PubMed 

Google Scholar 
Fairbanks, B. D. et al. Photoclick chemistry: a bright idea. Chem. Rev. 121, 6915–6990 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tasdelen, M. A. & Yagci, Y. Light-induced click reactions. Angew. Chem. Int. Ed. 52, 5930–5938 (2013).Article 
CAS 

Google Scholar 
Arumugam, S. & Popik, V. V. Patterned surface derivatization using Diels-Alder photoclick reaction. J. Am. Chem. Soc. 133, 15730–15736 (2011).Article 
CAS 
PubMed 

Google Scholar 
Pauloehrl, T. et al. Adding apatial control to click chemistry: phototriggered Diels-Alder surface (bio)functionalization at ambient temperature. Angew. Chem. Int. Ed. 51, 1071–1074 (2012).Article 
CAS 

Google Scholar 
Lederhose, P., Wüst, K. N. R., Barner-Kowollik, C. & Blinco, J. P. Catalyst free visible light induced cycloaddition as an avenue for polymer ligation. Chem. Commun. 52, 5928–5931 (2016).Article 
CAS 

Google Scholar 
Truong, V. X., Bachmann, J., Unterreiner, A., Blinco, J. P. & Barner‐Kowollik, C. Wavelength‐orthogonal stiffening of hydrogel networks with visible light. Angew. Chem. Int. Ed. 61, e202113076 (2022).Article 
CAS 

Google Scholar 
An, P., Lewandowski, T. M., Erbay, T. G., Liu, P. & Lin, Q. Sterically shielded, stabilized nitrile imine for rapid bioorthogonal protein labeling in live cells. J. Am. Chem. Soc. 140, 4860–4868 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kumar, G. S., Racioppi, S., Zurek, E. & Lin, Q. Superfast tetrazole–BCN cycloaddition reaction for bioorthogonal protein labeling on live cells. J. Am. Chem. Soc. 144, 57–62 (2022).Article 
CAS 
PubMed 

Google Scholar 
Fu, Y. et al. Ultrafast photoclick reaction for selective18F-positron emission tomography tracer synthesis in flow. J. Am. Chem. Soc. 143, 10041–10047 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Song, W., Wang, Y., Qu, J. & Lin, Q. Selective functionalization of a genetically encoded alkene-containing protein via ‘photoclick chemistry’ in bacterial cells. J. Am. Chem. Soc. 130, 9654–9655 (2008).Article 
CAS 
PubMed 

Google Scholar 
Song, W., Wang, Y., Qu, J., Madden, M. M. & Lin, Q. A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew. Chem. Int. Ed. 47, 2832–2835 (2008).Article 
CAS 

Google Scholar 
Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).Article 
CAS 
PubMed 

Google Scholar 
Gandavarapu, N. R., Azagarsamy, M. A. & Anseth, K. S. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv. Mater. 26, 2521–2526 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ritter, S. C. & König, B. Signal amplification and transduction by photo-activated catalysis. Chem. Commun. 2006, 4694–4696 (2006).Article 

Google Scholar 
Adzima, B. J. et al. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nat. Chem. 3, 256–259 (2011).Article 
CAS 
PubMed 

Google Scholar 
Zhang, L. et al. Discovery of fluorogenic diarylsydnone-alkene photoligation: conversion of ortho-dual-twisted diarylsydnones into planar pyrazolines. J. Am. Chem. Soc. 140, 7390–7394 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lim, R. K. V. & Lin, Q. Azirine ligation: fast and selective protein conjugation via photoinduced azirine–alkene cycloaddition. Chem. Commun. 46, 7993–7995 (2010).Article 
CAS 

Google Scholar 
Li, J. et al. Visible light-initiated bioorthogonal photoclick cycloaddition. J. Am. Chem. Soc. 140, 14542–14546 (2018).Article 
CAS 
PubMed 

Google Scholar 
Fu, Y. et al. Molecular engineering to enhance reactivity and selectivity in an ultrafast photoclick reaction. Angew. Chem. Int. Ed. 62, e202218203 (2023).Article 
CAS 

Google Scholar 
Stuckhardt, C., Wissing, M. & Studer, A. Photo click reaction of acylsilanes with indoles. Angew. Chem. Int. Ed. 60, 18605–18611 (2021).Article 
CAS 

Google Scholar 
Wegener, M., Hansen, M. J., Driessen, A. J. M., Szymanski, W. & Feringa, B. L. Photocontrol of antibacterial activity: shifting from UV to red light activation. J. Am. Chem. Soc. 139, 17979–17986 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Szymański, W., Beierle, J. M., Kistemaker, H. A. V., Velema, W. A. & Feringa, B. L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev. 113, 6114–6178 (2013).Article 
PubMed 

Google Scholar 
Welleman, I. M., Hoorens, M. W. H., Feringa, B. L., Boersma, H. H. & Szymański, W. Photoresponsive molecular tools for emerging applications of light in medicine. Chem. Sci. 11, 11672–11691 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Z. et al. Stepping out of the blue: from visible to near‐IR triggered photoswitches. Angew. Chem. Int. Ed. 61, e202205758 (2022).Article 
CAS 

Google Scholar 
Hansen, M. J., Velema, W. A., Lerch, M. M., Szymanski, W. & Feringa, B. L. Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chem. Soc. Rev. 44, 3358–3377 (2015).Article 
CAS 
PubMed 

Google Scholar 
Kunzi-Rapp, K. Photodynamic therapy in dermatology. Photonics Lasers Med. 4, 378–379 (2015).
Google Scholar 
Wang, S., Li, B. & Zhang, F. Molecular fluorophores for deep-tissue bioimaging. ACS Cent. Sci. 6, 1302–1316 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weinstain, R., Slanina, T., Kand, D. & Klán, P. Visible-to-NIR-light activated release: from small molecules to nanomaterials. Chem. Rev. 120, 13135–13272 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
An, P., Yu, Z. & Lin, Q. Design of oligothiophene-based tetrazoles for laser-triggered photoclick chemistry in living cells. Chem. Commun. 49, 9920–9922 (2013).Article 
CAS 

Google Scholar 
An, P., Yu, Z. & Lin, Q. Design and synthesis of laser-activatable tetrazoles for a fast and fluorogenic red-emitting 1,3-dipolar cycloaddition reaction. Org. Lett. 15, 5496–5499 (2013).Article 
CAS 
PubMed 

Google Scholar 
Yu, Z., Ohulchanskyy, T. Y., An, P., Prasad, P. N. & Lin, Q. Fluorogenic, two-photon-triggered photoclick chemistry in live mammalian cells. J. Am. Chem. Soc. 135, 16766–16769 (2013).Article 
CAS 
PubMed 

Google Scholar 
Lederhose, P. et al. Near-infrared photoinduced coupling reactions assisted by upconversion nanoparticles. Angew. Chem. Int. Ed. 55, 12195–12199 (2016).Article 
CAS 

Google Scholar 
Wu, Y., Zheng, J., Xing, D. & Zhang, T. Near-infrared light controlled fluorogenic labeling of glycoengineered sialic acids in vivo with upconverting photoclick nanoprobe. Nanoscale 12, 10361–10368 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kazybayeva, D. S., Irmukhametova, G. S. & Khutoryanskiy, V. V. Thiol-ene “click reactions” as a promising approach to polymer materials. Polym. Sci. Ser. B 64, 1–16 (2022).Article 
CAS 

Google Scholar 
Ahangarpour, M., Kavianinia, I., Harris, P. W. R. & Brimble, M. A. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem. Soc. Rev. 50, 898–944 (2021).Article 
CAS 
PubMed 

Google Scholar 
Lechner, V. M. et al. Visible-light-mediated modification and manipulation of biomacromolecules. Chem. Rev. 122, 1752–1829 (2022).Article 
CAS 
PubMed 

Google Scholar 
Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Monroe, B. M. & Weed, G. C. Photoinitiators for free-radical-initiated photoimaging systems. Chem. Rev. 93, 435–448 (1993).Article 
CAS 

Google Scholar 
Fouassier, J. P. & Lalevée, J. Photoinitiators for Polymer Synthesis: Scope, Reactivity and Efficiency (Wiley-VCH, 2012).Gong, T., Adzima, B. J., Baker, N. H. & Bowman, C. N. Photopolymerization reactions using the photoinitiated copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Adv. Mater. 25, 2024–2028 (2013).Article 
CAS 
PubMed 

Google Scholar 
Zhang, H. et al. Rapid bioorthogonal chemistry turn-on through enzymatic or long wavelength photocatalytic activation of tetrazine ligation. J. Am. Chem. Soc. 138, 5978–5983 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rahman, N., Purpura, K. A., Wylie, R. G., Zandstra, P. W. & Shoichet, M. S. The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells. Biomaterials 31, 8262–8270 (2010).Article 
CAS 
PubMed 

Google Scholar 
Wosnick, J. H. & Shoichet, M. S. Three-dimensional chemical patterning of transparent hydrogels. Chem. Mater. 20, 55–60 (2008).Article 
CAS 

Google Scholar 
Sutton, D. A., Yu, S. H., Steet, R. & Popik, V. V. Cyclopropenone-caged Sondheimer diyne (dibenzo[a,e]cyclooctadiyne): a photoactivatable linchpin for efficient SPAAC crosslinking. Chem. Commun. 52, 553–556 (2016).Article 
CAS 

Google Scholar 
McNitt, C. D., Cheng, H., Ullrich, S., Popik, V. V. & Bjerknes, M. Multiphoton activation of photo-strain-promoted azide alkyne cycloaddition “click” reagents enables in situ labeling with submicrometer resolution. J. Am. Chem. Soc. 139, 14029–14032 (2017).Article 
CAS 
PubMed 

Google Scholar 
Liu, L., Zhang, D., Johnson, M. & Devaraj, N. K. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry. Nat. Chem. 14, 1078–1085 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oehlenschlaeger, K. K. et al. Light-induced modular ligation of conventional RAFT polymers. Angew. Chem. Int. Ed. 52, 762–766 (2013).Article 
CAS 

Google Scholar 
Scinto, S. L. et al. Bioorthogonal chemistry. Nat. Rev. Methods Primers 1, 30 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).Article 
CAS 
PubMed 

Google Scholar 
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tasdelen, M. A. & Yagci, Y. Light-induced copper(I)-catalyzed click chemistry. Tetrahedron Lett. 51, 6945–6947 (2010).Article 
CAS 

Google Scholar 
Sandmann, B. et al. Photoinduced polyaddition of multifunctional azides and alkynes. Polym. Chem. 4, 3938–3942 (2013).Article 
CAS 

Google Scholar 
Tasdelen, M. A., Yilmaz, G., Iskin, B. & Yagci, Y. Photoinduced free radical promoted copper(I)-catalyzed click chemistry for macromolecular syntheses. Macromolecules 45, 56–61 (2012).Article 
CAS 

Google Scholar 
Taskin, O. S., Yilmaz, G. & Yagci, Y. Fullerene-attached polymeric homogeneous/heterogeneous photoactivators for visible-light-induced CuAAC click reactions. ACS Macro Lett. 5, 103–107 (2016).Article 
CAS 

Google Scholar 
Yetiskin, O., Dadashi-Silab, S., Khan, S. B., Asiri, A. M. & Yagci, Y. Visible-light-induced copper(I)-catalyzed azide-alkyne cycloaddition initiated by zinc oxide semiconductor nanoparticles. Asian J. Org. Chem. 4, 442–444 (2015).Article 
CAS 

Google Scholar 
Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).Article 
CAS 
PubMed 

Google Scholar 
Bauer, A., Westkämper, F., Grimme, S. & Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436, 1139–1140 (2005).Article 
CAS 
PubMed 

Google Scholar 
Kütahya, C., Yagci, Y. & Strehmel, B. Near‐infrared photoinduced copper‐catalyzed azide‐alkyne click chemistry with a cyanine comprising a barbiturate group. ChemPhotoChem 3, 1180–1186 (2019).Article 

Google Scholar 
Xuan, J. & Xiao, W.-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 51, 6828–6838 (2012).Article 
CAS 

Google Scholar 
Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).Article 
CAS 
PubMed 

Google Scholar 
Kumar, P. et al. Visible light assisted photocatalytic [3 + 2] azide-alkyne ‘click’ reaction for the synthesis of 1,4-substituted 1,2,3-triazoles using a novel bimetallic Ru-Mn complex. ACS Sustain. Chem. Eng. 4, 69–75 (2016).Article 

Google Scholar 
Wu, Z. et al. Visible‐light‐mediated click chemistry for highly regioselective azide–alkyne cycloaddition by a photoredox electron‐transfer strategy. Chem. Eur. J. 26, 5694–5700 (2020).Article 
CAS 
PubMed 

Google Scholar 
Martínez-Haya, R. et al. Mechanistic insight into the light-triggered CuAAC reaction: does any of the photocatalyst go? J. Org. Chem. 86, 5832–5844 (2021).Article 
PubMed 

Google Scholar 
Alonso, F., Moglie, Y. & Radivoy, G. Copper nanoparticles in click chemistry. Acc. Chem. Res. 48, 2516–2528 (2015).Article 
CAS 
PubMed 

Google Scholar 
Yang, B., Chen, Y. & Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119, 4881–4985 (2019).Article 
CAS 
PubMed 

Google Scholar 
You, Y. et al. Near-infrared light dual-promoted heterogeneous copper nanocatalyst for highly efficient bioorthogonal chemistry in vivo. ACS Nano 14, 4178–4187 (2020).Article 
CAS 
PubMed 

Google Scholar 
Sau, T. K., Rogach, A. L., Jäckel, F., Klar, T. A. & Feldmann, J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22, 1805–1825 (2010).Article 
CAS 
PubMed 

Google Scholar 
Sun, X., Zou, Y. & Jiang, J. Surface plasmon resonances enhanced click chemistry through synergistic photothermal and hot electron effects. Chem. Commun. 55, 4813–4816 (2019).Article 
CAS 

Google Scholar 
Zhang, S. et al. Driving click reactions with plasmonic hot holes on (Au core)@(Cu2O shell) nanostructures for regioselective production of 1,2,3-triazoles. ACS Appl. Nano Mater. 4, 4623–4631 (2021).Article 
CAS 

Google Scholar 
Mishiro, K., Kimura, T., Furuyama, T. & Kunishima, M. Phototriggered active alkyne generation from cyclopropenones with visible light-responsive photocatalysts. Org. Lett. 21, 4101–4105 (2019).Article 
CAS 
PubMed 

Google Scholar 
Singh, K. et al. Light harvesting for rapid and selective reactions: click chemistry with strain-loadable alkenes. Chem 4, 124–137 (2018).Article 
CAS 

Google Scholar 
Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater. 177, 70–80 (2010).Article 
CAS 
PubMed 

Google Scholar 
Houas, A. et al. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 31, 145–157 (2001).Article 
CAS 

Google Scholar 
Wang, C. et al. Enabling in vivo photocatalytic activation of rapid bioorthogonal chemistry by repurposing silicon-rhodamine fluorophores as cytocompatible far-red photocatalysts. J. Am. Chem. Soc. 143, 10793–10803 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jemas, A. et al. Catalytic activation of bioorthogonal chemistry with light (CABL) enables rapid, spatiotemporally controlled labeling and no-wash, subcellular 3D-patterning in live cells using long wavelength light. J. Am. Chem. Soc. 144, 1647–1662 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rosenberger, J. E. et al. Ligand-directed photocatalysts and far-red light enable catalytic bioorthogonal uncaging inside live cells. J. Am. Chem. Soc. 145, 6067–6078 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Truong, V. X., Tsang, K. M., Ercole, F. & Forsythe, J. S. Red light activation of tetrazine-norbornene conjugation for bioorthogonal polymer cross-linking across tissue. Chem. Mater. 29, 3678–3685 (2017).Article 
CAS 

Google Scholar 
Devaraj, N. K. & Weissleder, R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44, 816–827 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Klán, P. et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191 (2013).Article 
PubMed 

Google Scholar 
Engelke, J. & Truong, V. X. Visible light enabled: para-fluoro-thiol ligation. Polym. Chem. 11, 7015–7019 (2020).Article 
CAS 

Google Scholar 
Zhang, X., Xi, W., Wang, C., Podgórski, M. & Bowman, C. N. Visible-light-initiated thiol-Michael addition polymerizations with coumarin-based photobase generators: another photoclick reaction strategy. ACS Macro Lett. 5, 229–233 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Z., Liu, T., Lin, Q., Bao, C. & Zhu, L. Photoreleasable thiol chemistry for facile and efficient bioconjugation. Chem. Commun. 50, 1256–1258 (2014).Article 
CAS 

Google Scholar 
Li, M., Dove, A. P. & Truong, V. X. Additive‐free green light‐induced ligation using BODIPY triggers. Angew. Chem. Int. Ed. 59, 2284–2288 (2020).Article 
CAS 

Google Scholar 
Rich, D. H. & Gurwara, S. K. Removal of protected peptides from an ortho-nitrobenzyl resin by photolysis. J. Chem. Soc. Chem. Commun. 1973, 610–611 (1973).Article 

Google Scholar 
Barltrop, J. A., Plant, P. J. & Schofield, P. Photosensitive protective groups. Chem. Commun. 3002, 822 (1966).
Google Scholar 
Patchornik, A., Amit, B. & Woodward, R. B. Photosensitive protecting groups. J. Am. Chem. Soc. 92, 6333–6335 (1970).Article 
CAS 

Google Scholar 
Hauf, M. et al. Photoactivatable mussel-based underwater adhesive proteins by an expanded genetic code. ChemBioChem 18, 1819–1823 (2017).Article 
CAS 
PubMed 

Google Scholar 
Chou, C., Young, D. D. & Deiters, A. A light-activated DNA polymerase. Angew. Chem. Int. Ed. 48, 5950–5953 (2009).Article 
CAS 

Google Scholar 
Furuta, T. et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc. Natl Acad. Sci. USA 96, 1193–1200 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schulte, A. M., Alachouzos, G., Szymański, W. & Feringa, B. L. Strategy for engineering high photolysis efficiency of photocleavable protecting groups through cation stabilization. J. Am. Chem. Soc. 144, 12421–12430 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Z. et al. Spatiotemporally controllable and cytocompatible approach builds 3D cell culture matrix by photo-uncaged-thiol Michael addition reaction. Adv. Mater. 26, 3912–3917 (2014).Article 
CAS 
PubMed 

Google Scholar 
Lin, Q. et al. Coumarin photocaging groups modified with an electron-rich styryl moiety at the 3-position: long-wavelength excitation, rapid photolysis, and photobleaching. Angew. Chem. 130, 3784–3788 (2018).Article 

Google Scholar 
Hu, L. & Colman, R. F. Monobromobimane as an affinity label of the xenobiotic binding site of rat glutathione S-transferase 3-3. J. Biol. Chem. 270, 21875–21883 (1995).Article 
CAS 
PubMed 

Google Scholar 
Lavis, L. D. & Raines, R. T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kosower, N. S., Kosower, E. M., Newton, G. L. & Ranney, H. M. Bimane fluorescent labels: labeling of normal human red cells under physiological conditions. Proc. Natl Acad. Sci. USA 76, 3382–3386 (1979).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mansoor, S. E., Mchaourab, H. S. & Farrens, D. L. Mapping proximity within proteins using fluorescence spectroscopy. A study of T4 lysozyme showing that tryptophan residues quench bimane fluorescence. Biochemistry 41, 2475–2484 (2002).Article 
CAS 
PubMed 

Google Scholar 
Truong, V. X., Li, F. & Forsythe, J. S. Visible light activation of nucleophilic thiol-X addition via thioether bimane photocleavage for polymer cross-linking. Biomacromolecules 19, 4277–4285 (2018).Article 
CAS 
PubMed 

Google Scholar 
Momotake, A., Lindegger, N., Niggli, E., Barsotti, R. J. & Ellis-Davies, G. C. R. The nitrodibenzofuran chromophore: a new caging group for ultra-efficient photolysis in living cells. Nat. Methods 3, 35–40 (2006).Article 
CAS 
PubMed 

Google Scholar 
Mahmoodi, M. M. et al. Nitrodibenzofuran: a one-and two-photon sensitive protecting group that is superior to brominated hydroxycoumarin for thiol caging in peptides. J. Am. Chem. Soc. 138, 5848–5859 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fisher, S. A. et al. Photo-immobilized EGF chemical gradients differentially impact breast cancer cell invasion and drug response in defined 3D hydrogels. Biomaterials 178, 751–766 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Slanina, T. et al. In search of the perfect photocage: structure-reactivity relationships in meso-methyl BODIPY photoremovable protecting groups. J. Am. Chem. Soc. 139, 15168–15175 (2017).Article 
CAS 
PubMed 

Google Scholar 
Goswami, P. P. et al. BODIPY-derived photoremovable protecting groups unmasked with green light. J. Am. Chem. Soc. 137, 3783–3786 (2015).Article 
CAS 
PubMed 

Google Scholar 
Sitkowska, K. et al. Red-light-sensitive BODIPY photoprotecting groups for amines and their biological application in controlling heart rhythm. Chem. Commun. 56, 5480–5483 (2020).Article 
CAS 

Google Scholar 
Sitkowska, K., Feringa, B. L. & Szymański, W. Green-light-sensitive BODIPY photoprotecting groups for amines. J. Org. Chem. 83, 1819–1827 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rodrigues, L. L. et al. A self-catalyzed visible light driven thiol ligation. J. Am. Chem. Soc. 143, 7292–7297 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, F. et al. Green-light responsive perylene bisimides for atom-economic thiol generation and click-ligation. Org. Lett. 25, 872–876 (2023).Article 
CAS 
PubMed 

Google Scholar 
Vrabel, M. & Carell, T. Cycloadditions in Bioorthogonal Chemistry (Springer, 2016).Potts, K. T. & Baum, J. S. Chemistry of cyclopropenones. Chem. Rev. 74, 189–213 (1974).Article 
CAS 

Google Scholar 
Urdabayev, N. K., Poloukhtine, A. & Popik, V. V. Two-photon induced photodecarbonylation reaction of cyclopropenones. Chem. Commun. 2006, 454–456 (2006).Article 

Google Scholar 
Poloukhtine, A. & Popik, V. V. Highly efficient photochemical generation of a triple bond: synthesis, properties, and photodecarbonylation of cyclopropenones. J. Org. Chem. 68, 7833–7840 (2003).Article 
CAS 
PubMed 

Google Scholar 
Arumugam, S. & Popik, V. V. Sequential “click”–“photo-click” cross-linker for catalyst-free ligation of azide-tagged substrates. J. Org. Chem. 79, 2702–2708 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sutton, D. A. & Popik, V. V. Sequential photochemistry of dibenzo[a,e]dicyclopropa[c,g][8]annulene-1,6-dione: selective formation of didehydrodibenzo[a,e][8]annulenes with ultrafast SPAAC reactivity. J. Org. Chem. 81, 8850–8857 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Poloukhtine, A. A., Mbua, N. E., Wolfert, M. A., Boons, G.-J. & Popik, V. V. Selective labeling of living cells by a photo-triggered click reaction. J. Am. Chem. Soc. 131, 15769–15776 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Šečkute, J. & Devaraj, N. K. Expanding room for tetrazine ligations in the in vivo chemistry toolbox. Curr. Opin. Chem. Biol. 17, 761–767 (2013).Article 
PubMed 

Google Scholar 
Jiang, T. et al. Modular enzyme‐ and light‐based activation of cyclopropene–tetrazine ligation. ChemBioChem 20, 2222–2226 (2019).Article 
CAS 
PubMed 

Google Scholar 
Sun, Y. et al. Strained cyclooctyne as a molecular platform for construction of multimodal imaging probes. Angew. Chem. Int. Ed. 54, 5981–5984 (2015).Article 
CAS 

Google Scholar 
Van Geel, R., Pruijn, G. J. M., Van Delft, F. L. & Boelens, W. C. Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. Bioconjug. Chem. 23, 392–398 (2012).Article 
PubMed 

Google Scholar 
Kiselev, V. G., Cheblakov, P. B. & Gritsan, N. P. Tautomerism and thermal decomposition of tetrazole: high-level ab initio study. J. Phys. Chem. A 115, 1743–1753 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y., Rivera Vera, C. I. & Lin, Q. Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. Org. Lett. 9, 4155–4158 (2007).Article 
CAS 
PubMed 

Google Scholar 
Padwa, A., Nahm, S. & Sato, E. Photochemical transformations of small ring heterocyclic compounds. 9. Intramolecular 1,3-dipolar cycloaddition reactions of alkenyl-subituted nitrile imines. J. Org. Chem. 43, 1664–1671 (1978).Article 
CAS 

Google Scholar 
Wang, Y., Hu, W. J., Song, W., Lim, R. K. V. & Lin, Q. Discovery of long-wavelength photoactivatable diaryltetrazoles for bioorthogonal 1,3-dipolar cycloaddition reactions. Org. Lett. 10, 3725–3728 (2008).Article 
CAS 
PubMed 

Google Scholar 
Lim, R. K. V. & Lin, Q. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Acc. Chem. Res. 44, 828–830 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dietrich, M. et al. Photoclickable surfaces for profluorescent covalent polymer coatings. Adv. Funct. Mater. 22, 304–312 (2012).Article 
CAS 

Google Scholar 
Blasco, E. et al. Photochemical generation of light responsive surfaces. Adv. Funct. Mater. 23, 4011–4019 (2013).Article 
CAS 

Google Scholar 
Rodriguez-Emmenegger, C. et al. Controlled cell adhesion on poly(dopamine) interfaces photopatterned with non-fouling brushes. Adv. Mater. 25, 6123–6127 (2013).Article 
CAS 
PubMed 

Google Scholar 
Delaittre, G., Guimard, N. K. & Barner-Kowollik, C. Cycloadditions in modern polymer chemistry. Acc. Chem. Res. 48, 1296–1307 (2015).Article 
CAS 
PubMed 

Google Scholar 
Mueller, J. O., Guimard, N. K., Oehlenschlaeger, K. K., Schmidt, F. G. & Barner-Kowollik, C. Sunlight-induced crosslinking of 1,2-polybutadienes: access to fluorescent polymer networks. Polym. Chem. 5, 1447–1456 (2014).Article 
CAS 

Google Scholar 
Kumar, G. S., Racioppi, S., Zurek, E. & Lin, Q. Superfast tetrazole-BCN cycloaddition reaction for bioorthogonal protein labeling on live cells. J. Am. Chem. Soc. 144, 57–62 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kamm, P. W., Blinco, J. P., Unterreiner, A. N. & Barner-Kowollik, C. Green-light induced cycloadditions. Chem. Commun. 57, 3991–3994 (2021).Article 
CAS 

Google Scholar 
Konrad, W., Fengler, C., Putwa, S. & Barner‐Kowollik, C. Protection‐group‐free synthesis of sequence‐defined macromolecules via precision λ‐orthogonal photochemistry. Angew. Chem. Int. Ed. 58, 7133–7137 (2019).Article 
CAS 

Google Scholar 
Hiltebrandt, K. et al. λ-Orthogonal pericyclic macromolecular photoligation. Angew. Chem. Int. Ed. 54, 2838–2843 (2015).Article 
CAS 

Google Scholar 
Lederhose, P. et al. Exploiting λ‐orthogonal photoligation for layered surface patterning. Chem. Eur. J. 24, 576–580 (2018).Article 
CAS 
PubMed 

Google Scholar 
Xu, C. & Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481 (1996).Article 
CAS 

Google Scholar 
So, P. T. C., Dong, C. Y., Masters, B. R. & Berland, K. M. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000).Article 
CAS 
PubMed 

Google Scholar 
Zoumi, A., Yeh, A. & Tromberg, B. J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl Acad. Sci. USA 99, 11014–11019 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).Article 
CAS 

Google Scholar 
Carling, C. J., Boyer, J. C. & Branda, N. R. Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 131, 10838–10839 (2009).Article 
CAS 
PubMed 

Google Scholar 
Boyer, J.-C., Carling, C.-J., Gates, B. D. & Branda, N. R. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J. Am. Chem. Soc. 132, 15766–15772 (2010).Article 
CAS 
PubMed 

Google Scholar 
Wu, W. et al. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J. Am. Chem. Soc. 133, 15810–15813 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wu, S. & Butt, H.-J. Near-infrared-sensitive materials based on upconverting nanoparticles. Adv. Mater. 28, 1208–1226 (2016).Article 
CAS 
PubMed 

Google Scholar 
Chen, C. et al. Heterochromatic nonlinear optical responses in upconversion nanoparticles for super-resolution nanoscopy. Adv. Mater. 33, 2008847 (2021).Article 
CAS 

Google Scholar 
Sauer, J. & Sustmann, R. Mechanistic aspects of Diels-Alder reactions: a critical survey. Angew. Chem. Int. Ed. 19, 779–807 (1980).Article 

Google Scholar 
Nicolaou, K. C., Snyder, S. A., Montagnon, T. & Vassilikogiannakis, G. The Diels-Alder reaction in total synthesis. Angew. Chem. Int. Ed. 41, 1668–1698 (2002).Article 
CAS 

Google Scholar 
Yang, B. & Gao, S. Recent advances in the application of Diels-Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem. Soc. Rev. 47, 7926–7953 (2018).Article 
CAS 
PubMed 

Google Scholar 
Segura, J. L. & Martín, N. o-Quinodimethanes: efficient intermediates in organic synthesis. Chem. Rev. 99, 3199–3246 (1999).Article 
CAS 
PubMed 

Google Scholar 
Zydziak, N. et al. Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation. Nat. Commun. 7, 13672 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Winkler, M. et al. Highly orthogonal functionalization of ADMET polymers via photo-induced Diels-Alder reactions. Macromolecules 45, 5012–5019 (2012).Article 
CAS 

Google Scholar 
Quick, A. S. et al. Fabrication and spatially resolved functionalization of 3D microstructures via multiphoton-induced Diels-Alder chemistry. Adv. Funct. Mater. 24, 3571–3580 (2014).Article 
CAS 

Google Scholar 
Feist, F., Menzel, J. P., Weil, T., Blinco, J. P. & Barner-Kowollik, C. Visible light-induced ligation via o-quinodimethane thioethers. J. Am. Chem. Soc. 140, 11848–11854 (2018).Article 
CAS 
PubMed 

Google Scholar 
Feist, F. et al. Light-induced ligation of o-quinodimethanes with gated fluorescence self-reporting. J. Am. Chem. Soc. 142, 7744–7748 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mueller, P. et al. Molecular switch for sub-diffraction laser lithography by photoenol intermediate-state cis-trans isomerization. ACS Nano 11, 6396–6403 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).Article 
CAS 
PubMed 

Google Scholar 
Padwa, A., Smolanoff, J. & Tremper, A. Intramolecular cycloaddition reactions of vinyl-substituted 2H-azirines. J. Am. Chem. Soc. 97, 4682–4691 (1975).Article 
CAS 

Google Scholar 
Khlebnikov, A. F. & Novikov, M. S. Recent advances in 2H-azirine chemistry. Tetrahedron 69, 3363–3401 (2013).Article 
CAS 

Google Scholar 
Palacios, F., de Retana, A. M. O., de Marigorta, E. M. & de Los Santos, J. M. 2H-Azirines as synthetic tools in organic chemistry. Eur. J. Org. Chem. 2001, 2401–2414 (2001).Article 

Google Scholar 
Mueller, J. O., Schmidt, F. G., Blinco, J. P. & Barner-Kowollik, C. Visible-light-induced click chemistry. Angew. Chem. Int. Ed. 54, 10284–10288 (2015).Article 
CAS 

Google Scholar 
Cherepanov, I. A. & Moiseev, S. K. Recent developments in the chemistry of sydnones and sydnone imines. Adv. Heterocycl. Chem. 131, 49–164 (2020).Article 
CAS 

Google Scholar 
Zhang, X. et al. Photo-accelerated ‘click’ reaction between diarylsydnones and ring-strained alkynes for bioorthogonal ligation. Chem. Commun. 55, 7187–7190 (2019).Article 
CAS 

Google Scholar 
Siewertsen, R. et al. Highly efficient reversible Z–E photoisomerization of a bridged azobenzene with visible light through resolved S 1 (nπ*) absorption bands. J. Am. Chem. Soc. 131, 15594–15595 (2009).Article 
CAS 
PubMed 

Google Scholar 
Xiong, Q. et al. Expanding the functionality of proteins with genetically encoded dibenzo[b,f][1,4,5]thiadiazepine: a photo-transducer for photo-click decoration. Chem. Sci. 13, 3571–3581 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deng, J., Wu, X., Guo, G., Zhao, X. & Yu, Z. Photoisomerization-enhanced 1,3-dipolar cycloaddition of carbon-bridged octocyclic azobenzene with photo-released nitrile imine for peptide stapling and imaging in live cells. Org. Biomol. Chem. 18, 5602–5607 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gao, J. et al. Direct ring-strain loading for visible-light accelerated bioorthogonal ligation via diarylsydnone-dibenzo[b,f][1,4,5]thiadiazepine photo-click reactions. Commun. Chem. 3, 29 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, H. et al. Visible-light induced photo-click and release strategy between monoarylsydnone and phenoxylfumarate. Chem. Commun. 57, 8135–8138 (2021).Article 
CAS 

Google Scholar 
Schönberg, A. & Mustafa, A. Photochemical reactions. Part VIII. Reaction of ethylenes with phenanthraquinone. J. Chem. Soc. 1944, 387 (1944).Article 

Google Scholar 
Schönberg, A. & Mustafa, A. Reactions of ethylenes with 1,2-diketones in sunlight. Nature 153, 195 (1944).Article 

Google Scholar 
Kuboyama, A., Kobayashi, F. & Morokuma, S. Studies of the π→π* absorption bands of 9,10-phenanthrenequinone. Bull. Chem. Soc. Jpn 48, 2145–2148 (1975).Article 
CAS 

Google Scholar 
Carapellucci, P. A., Wolf, H. P. & Weiss, K. Photoreduction of 9,10-phenanthrenequinone. J. Am. Chem. Soc. 91, 4635–4639 (1969).Article 
CAS 

Google Scholar 
Farid, S., Hess, D., Pfundt, G., Scholz, K. H. & Steffan, G. Photoreactions of o-quinones with olefins: a new type of reaction leading to dioxole derivatives. Chem. Commun. 3, 638–639 (1968).
Google Scholar 
Rubin, M. B. Photochemical reactions of diketones. V.1 Reaction of phenanthrenequinone and benzene2. J. Am. Chem. Soc. 94, 6048–6053 (1972).Article 
CAS 

Google Scholar 
Zheng, J. et al. Visualization of Zika virus infection via a light-initiated bio-orthogonal cycloaddition labeling strategy. Front. Bioeng. Biotechnol. 10, 940511 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Petersen, L. R., Jamieson, D. J., Powers, A. M. & Honein, M. A. Zika virus. N. Engl. J. Med. 374, 1552–1563 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wang, F. et al. A light-initiated chemical reporter strategy for spatiotemporal labeling of biomolecules. RSC Chem. Biol. 3, 539–545 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, D. et al. Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix. Nano Res. 15, 4294–4301 (2022).Article 
CAS 

Google Scholar 
Fong, D., Lang, A., Li, K. & Adronov, A. Visible light-mediated photoclick functionalization of a conjugated polymer backbone. Macromolecules 53, 1760–1766 (2020).Article 
CAS 

Google Scholar 
Fu, Y. et al. Establishing PQ-ERA photoclick reactions with unprecedented efficiency by engineering of the nature of the phenanthraquinone triplet state. Chem. Sci. 14, 7465–7474 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fu, Y. et al. Triplet‐triplet energy transfer: a simple strategy for an efficient visible light‐induced photoclick reaction. Angew. Chem. Int. Ed. 63, e202319321 (2024).Article 
CAS 

Google Scholar 
Fu, Y. et al. Efficient, near‐infrared light‐induced photoclick reaction enabled by upconversion nanoparticles. Adv. Funct. Mater. 33, 2306531 (2023).Article 
CAS 

Google Scholar 
Hong, W. P., Lim, H. N. & Shin, I. Recent progress and perspectives in photo-induced organic reactions of acylsilanes. Org. Chem. Front. 10, 819–836 (2023).Article 
CAS 

Google Scholar 
Mitterbauer, M., Haas, M., Stüger, H., Moszner, N. & Liska, R. Tetrakis(2,4,6-trimethylbenzoyl)silane — a novel photoinitiator for visible light curing. Macromol. Mater. Eng. 302, 1600536 (2017).Article 

Google Scholar 
Reimler, J. & Studer, A. Visible‐light mediated tryptophan modification in oligopeptides employing acylsilanes. Chem. Eur. J. 27, 15392–15395 (2021).Article 
CAS 
PubMed 

Google Scholar 
Frisch, H., Marschner, D. E., Goldmann, A. S. & Barner‐Kowollik, C. Wavelength‐gated dynamic covalent chemistry. Angew. Chem. Int. Ed. 57, 2036–2045 (2018).Article 
CAS 

Google Scholar 
Poplata, S., Tröster, A., Zou, Y. Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kalayci, K., Frisch, H., Truong, V. X. & Barner-Kowollik, C. Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline — controlling photoreactivity by pH. Nat. Commun. 11, 4193 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Irshadeen, I. M. et al. Action plots in action: in-depth insights into photochemical reactivity. J. Am. Chem. Soc. 143, 21113–21126 (2021).Article 
CAS 
PubMed 

Google Scholar 
Walden, S. L., Carroll, J. A., Unterreiner, A. N. & Barner-Kowollik, C. Photochemical action plots reveal the fundamental mismatch between absorptivity and photochemical reactivity. Adv. Sci. 11, 2306014 (2024).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles