The development of Giant reed biochar for adsorption of Basic Blue 41 and Eriochrome Black T. azo dyes from wastewater

Ahmed, S. & Ismail, S. Water pollution and its sources, effects & management: A case study of Delhi. International Journal of Current Advanced Research. 7, 10436–10442 (2018).Borah, D. K. & Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Trans. ASAE 47, 789 (2004).Article 
CAS 

Google Scholar 
Doetterl, S., Van Oost, K. & Six, J. Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surf. Process Landforms 37, 642–655 (2012).Article 
ADS 

Google Scholar 
Yadav, S., Chander, S., Gupta, A., Kataria, N. & Khoo, K. S. Biogenic engineered zinc oxide nanoparticle for sulfur black dye removal from contaminated wastewater: Comparative optimization, simulation modeling, and isotherms. Bioengineered 15, 2325721 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Serejo, M. L. et al. Environmental Resilience by Microalgae. In Microalgae Cultivation for Biofuels Production (eds Serejo, M. L. et al.) (Elsevier, 2020).
Google Scholar 
Verma, A. K., Dash, R. R. & Bhunia, P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 93, 154–168 (2012).Article 
CAS 

Google Scholar 
Rose, P. K. et al. Congo red dye removal using modified banana leaves: Adsorption equilibrium, kinetics, and reusability analysis. Groundw. Sustain. Dev. 23, 101005 (2023).Article 

Google Scholar 
Mansour, R. Natural dyes and pigments: Extraction and applications. Handbook. Renew. Mater. Color. Finish. 9, 75–102 (2018).
Google Scholar 
Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A. & Idris, A. Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280, 1–13 (2011).Article 
CAS 

Google Scholar 
Hamdi, L., Boumehdi, L. & Salem, Z. Basic blue 41 dye removal from aqueous solution using lignocellulosic material: kinetics, equilibrium and statistical design optimization. Int. J. Environ. Sci. Technol. 20, 3275–3294 (2023).Article 
CAS 

Google Scholar 
Kansal, S. K., Sood, S., Umar, A. & Mehta, S. K. Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J. Alloys Compd. 581, 392–397 (2013).Article 
CAS 

Google Scholar 
Yaseen, D. A. & Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Tech. 16, 1193–1226 (2019).Article 
CAS 

Google Scholar 
Ai, L. et al. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 198, 282–290 (2011).Article 
CAS 
PubMed 

Google Scholar 
Fazal, T. et al. Integrating adsorption and photocatalysis : A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO 2 composite. J. Hazard. Mater. 390, 121623 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hutagalung, S. S., Muchlis, I. & Khotimah, K. Textile wastewater treatment using advanced oxidation process (AOP). In IOP conference series: materials science and engineering (ed. Hutagalung, S.) (IOP Publishing, 2020).
Google Scholar 
Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., Rene, E. R. & Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf. Environ. Prot. 143, 138–163 (2020).Article 
CAS 

Google Scholar 
Yao, C., Wang, M., Jiang, W. & Chen, Y. %J E. E. R. Study on a novel N-doped mesoporous carbon for the efficient removal of methylene blue from aqueous solution. 26, (2021).Kifetew, M. et al. Adsorptive Removal of Reactive Yellow 145 Dye from Textile Industry Effluent Using Teff Straw Activated Carbon: Optimization Using Central Composite Design. Water 15, 1281 (2023).Article 
CAS 

Google Scholar 
Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J. & Hussain, M. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ. Sci. Pollut. Res. 28, 9050–9066 (2021).Article 
CAS 

Google Scholar 
Fito, J. et al. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Sci. Rep. 13, 5427 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xiong, X. et al. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresourc. Technol. 246, 254–270 (2017).Article 
CAS 

Google Scholar 
Wang, W. et al. Preparation of TiO 2-modified Biochar and its Characteristics of Photo-catalysis Degradation for Enrofloxacin. Sci Rep. 10, 1–12. https://doi.org/10.1038/s41598-020-62791-5 (2020).Romanovski, V. Agricultural waste based-nanomaterials: Green technology for water purification. In Aquananotechnology (ed. Romanovski, V.) (Elsevier, 2021).
Google Scholar 
Lansdown, R. V, Knees, S. G. & Patzelt, A. Bacopa monnieri. The IUCN Red list of Threatened Species 2013. e. T164168A17722668. https://doi.org/10.2305/IUCN.UK.20131.RLTS.T164168A17722668.en (2013).Ahmed, M. J. Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments. J. Taiwan. Inst. Chem. Eng. 63, 336–343 (2016).Article 
CAS 

Google Scholar 
Zhao, Y., Huang, L. & Chen, Y. P. Biochars derived from giant reed (Arundo donax L.) with different treatment: characterization and ammonium adsorption potential. Environ. Sci. Pollut. Res. 24, 25889–25898 (2017).Article 
CAS 

Google Scholar 
Eric, Y. Pb (II) removal from aqueous solution by biochar produced from giant reed. (2020).Liu, G., Zheng, H., Zhai, X. & Wang, Z. Characteristics and mechanisms of microcystin-LR adsorption by giant reed-derived biochars: Role of minerals, pores, and functional groups. J. Clean. Prod. 176, 463–473 (2018).Article 
CAS 

Google Scholar 
Hou, J., Huang, L., Yang, Z., Zhao, Y. & Deng, C. Adsorption of ammonium on biochar prepared from giant reed. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-016-7084-4 (2016).Article 

Google Scholar 
Abewaa, M., Mengistu, A., Takele, T., Fito, J. & Nkambule, T. Adsorptive removal of malachite green dye from aqueous solution using Rumex abyssinicus derived activated carbon. Sci. Rep. 13, 1–16 (2023).Article 

Google Scholar 
Masuku, M., Nure, J. F., Atagana, H. I., Hlongwa, N. & Nkambule, T. T. I. Jo ur of. Sci. Total Environ. 168136 (2023) https://doi.org/10.1016/j.scitotenv.2023.168136.Parsa, M., Nourani, M., Baghdadi, M., Hosseinzadeh, M. & Pejman, M. Biochars derived from marine macroalgae as a mesoporous by-product of hydrothermal liquefaction process: characterization and application in wastewater treatment. J. Water Process Eng. 32, 100942 (2019).Article 

Google Scholar 
Mohamed Noor, N., Shariff, A., Abdullah, N. & Aziz, S. Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste. Malaysian J. Fundam. Appl. Sci. 15, 153–158 (2019).Article 

Google Scholar 
Maulina, S. & Iriansyah, M. Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder. In IOP conference series: materials science and engineering (ed. Maulina, S.) (IOP Publishing, 2018).
Google Scholar 
Zhao, Y., Huang, L. & Chen, Y. Biochars derived from giant reed ( Arundo donax L.) with different treatment : characterization and ammonium adsorption potential. Environ Sci. Pollut. Res. https://doi.org/10.1007/s11356-017-0110-3 (2017).Article 

Google Scholar 
Jedynak, K. & Charmas, B. Adsorption properties of biochars obtained by KOH activation. Adsorption https://doi.org/10.1007/s10450-023-00399-7 (2023).Article 

Google Scholar 
Guilhen, S. N. et al. Role of point of zero charge in the adsorption of cationic textile dye on standard biochars from aqueous solutions. Recent Prog. Mater. 4, 1–30 (2022).Article 

Google Scholar 
Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A. & Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11, 6613–6621 (2014).Article 
ADS 

Google Scholar 
Tan, X. et al. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Yan, Y., Manickam, S., Lester, E., Wu, T. & Pang, C. H. Synthesis of Graphene Oxide and Graphene Quantum Dots from Miscanthus via Ultrasound-Assisted Mechano-Chemical Cracking Method. Ultrason. Sonochem. 73, 105519 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tam, N. T. M. et al. Synthesis of porous biochar containing graphitic carbon derived from lignin content of forestry biomass and its application for the removal of diclofenac sodium from aqueous solution. Front. Chem. 8, 274 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Galashev, A. & Rakhmanova, O. Mechanical and thermal stability of graphene and graphene-based materials. Physics-Uspekhi 57, 970–989 (2014).Article 
ADS 
CAS 

Google Scholar 
Hadey, C., Allouch, M., Alami, M., Boukhlifi, F. & Loulidi, I. Preparation and Characterization of Biochars Obtained from Biomasses for Combustible Briquette Applications. Sci. World J. 2022, 2554475 (2022).Article 

Google Scholar 
Le, P. T. et al. Preparation and Characterization of Biochar Derived from Agricultural By-Products for Dye Removal. Adsorpt. Sci. Technol. 1–14. https://doi.org/10.1155/2021/9161904 (2021).Arwenyo, B., Navarathna, C., Das, N. K., Hitt, A. & Mlsna, T. Sorption of Phosphate on Douglas Fir Biochar Treated with Magnesium Chloride and Potassium Hydroxide for Soil Amendments. Processes 11, 331 (2023).Article 
CAS 

Google Scholar 
Md Salim, R., Asik, J. & Sarjadi, M. S. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 55, 295–313 (2021).Article 
CAS 

Google Scholar 
Yeboah, M. L., Li, X. & Zhou, S. Facile Fabrication of Biochar from Palm Kernel Shell Waste and Its Novel Application to Magnesium-Based Materials for Hydrogen Storage. Materials 13, 625 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Patel, S. et al. Production of H2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption. Waste Manag. 159, 146–153 (2023).Article 
CAS 
PubMed 

Google Scholar 
Dervishi, E., Ji, Z., Htoon, H., Sykora, M. & Doorn, S. K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: Size and structure dependence. Nanoscale 11, 16571–16581 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. et al. Development of iron-based biochar for enhancing nitrate adsorption: Effects of specific surface area, electrostatic force, and functional groups. Sci. Total Environ. 856, 159037 (2023).Article 
CAS 
PubMed 

Google Scholar 
Amen, R. et al. Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob. Clean. Eng. Technol. 1, 100006 (2020).Article 

Google Scholar 
Nasir, M., Rahmawati, T. & Dara, F. Synthesis and Characterization of Biochar from Crab Shell by Pyrolysis. IOP Conf. Ser. Mater. Sci. Eng. 553, 12031 (2019).Article 

Google Scholar 
Salman, S. et al. Improving copper ( II ) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J. Mol. Struct. 1282, 135259 (2023).Article 
CAS 

Google Scholar 
Praveen, S., Jegan, J., Bhagavathi, T. & Ravindiran, P. Biochar for removal of dyes in contaminated water : an overview. Biochar https://doi.org/10.1007/s42773-022-00131-8 (2022).Article 

Google Scholar 
Dugmore, T., Bansal, M. & Patnala, P. Adsorption of Eriochrome Black-T(EBT) using tea waste as a low cost adsorbent by batch studies: A green approach for dye effluent treatments. Curr. Res. Green Sustain. Chem. 3, 100036 (2020).Article 

Google Scholar 
Li, D., Yan, J., Liu, Z. & Liu, Z. Adsorption kinetic studies for removal of methylene blue using activated carbon prepared from sugar beet pulp. Int. J. Environ. Sci. Technol. 13, 1815–1822 (2016).Article 
CAS 

Google Scholar 
Oetjik, W. & Ibrahim, S. A. A review: the effect of initial Dye concentration and contact time on the process of Dye adsorption using agricultural wastes adsorbent. Prog. Eng. Appl. Technol. 2, 1051–1059 (2021).
Google Scholar 
El-Sayed, G. O., Yehia, M. M. & Asaad, A. A. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resour. Ind. 7–8, 66–75 (2014).Article 

Google Scholar 
Xiong, S. et al. Adsorption isotherm and equilibrium process of dye wastewater onto camphor sawdust. Nat. Environ. Pollut. Technol. 15, 689 (2016).CAS 

Google Scholar 
Alzein, M. Adsorptive removal of basic blue 41 using pistachio shell adsorbent – Performance in batch and column system. Sustain. Chem. Pharm. 16, 100254 (2020).Article 
ADS 

Google Scholar 
Nizam, N. U. M., Hanafiah, M. M., Mahmoudi, E., Halim, A. A. & Mohammad, A. W. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci. Rep. 11, 8623 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Thillainayagam, B. P. & Nagalingam, R. Batch and column studies on removal of eriochrome black T dye by microalgae biochar. Glob. NEST J. 25, 6–16 (2023).
Google Scholar 
Cheung, P. C. W. et al. Decolourisation of Metal-azo Dyes in Wastewaters by Sodium Peroxodisulphate : A Template for Experimental Investigations. Open Environ. Res. J. https://doi.org/10.2174/25902776-v16-e230216-2022-2 (2023).Article 

Google Scholar 
Saravanan, P. & Josephraj, J. Evaluation of the adsorptive removal of cationic dyes by greening biochar derived from agricultural bio-waste of rice husk. 4047–4060 (2023).Saravanan, P., Thillainayagam, B. P., Ravindiran, G. & Josephraj, J. Evaluation of the adsorption capacity of Cocos Nucifera shell derived biochar for basic dyes sequestration from aqueous solution. Energ. Sourc. Part A: Recover. Utilizat. Environ. Effect. 1–17. https://doi.org/10.1080/15567036.2020.180014266 (2020)El Mansouri, F. et al. Efficient Removal of Eriochrome Black T Dye Using Activated Carbon of Waste Hemp (Cannabis sativa L.) Grown in Northern Morocco Enhanced by New Mathematical Models. Separations 9, 283 (2022).Article 

Google Scholar 

Hot Topics

Related Articles