Restructuring dynamics of surface species in bimetallic nanoparticles probed by modulation excitation spectroscopy

Niu, Y. et al. Patterning the consecutive Pd(3) to Pd(1) on Pd(2)Ga surface via temperature-promoted reactive metal-support interaction. Sci. Adv. 8, eabq5751 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, C., Chen, X., Xue, Z. & Wang, T. Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate. Sci. Adv. 6, eaba1321 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Divins, N. J., Angurell, I., Escudero, C., Pérez-Dieste, V. & Llorca, J. Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346, 620–623 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Martín, A. J., Mitchell, S., Mondelli, C., Jaydev, S. & Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 5, 854–866 (2022).Article 

Google Scholar 
Tao, F. & Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171–174 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).Article 
PubMed 

Google Scholar 
Marcella, N. et al. Decoding reactive structures in dilute alloy catalysts. Nat. Commun. 13, 832 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Foucher, A. C. et al. Atomic-scale STEM analysis shows structural changes of Au–Pd nanoparticles in various gaseous environments. J. Phys. Chem. C. 126, 18047–18056 (2022).Article 
ADS 
CAS 

Google Scholar 
Serrer, M.-A. et al. Structural dynamics in Ni–Fe catalysts during CO2 methanation–role of iron oxide clusters. Cat. Sci. Technol. 10, 7542–7554 (2020).Article 
CAS 

Google Scholar 
Han, Y.-F. et al. Au promotional effects on the synthesis of H2O2 directly from H2 and O2 on supported Pd−Au alloy catalysts. J. Phys. Chem. C. 111, 8410–8413 (2007).Article 
CAS 

Google Scholar 
Luneau, M. et al. Enhancing catalytic performance of dilute metal alloy nanomaterials. Commun. Chem. 3, 46 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Gao, F. & Goodman, D. W. Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem. Soc. Rev. 41, 8009–8020 (2012).Article 
CAS 
PubMed 

Google Scholar 
Lee, J. D. et al. Dilute alloys based on Au, Ag, or Cu for efficient catalysis: from synthesis to active sites. Chem. Rev. 122, 8758–8808 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, L. & Corma, A. Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chem. Rev. 123, 4855–4933 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gao, F., Wang, Y. & Goodman, D. W. Reaction kinetics and Polarization-Modulation Infrared Reflection Absorption Spectroscopy (PM-IRAS) investigation of CO oxidation over supported Pd−Au alloy catalysts. J. Phys. Chem. C. 114, 4036–4043 (2010).Article 
CAS 

Google Scholar 
Gibson, E. K. et al. Restructuring of AuPd nanoparticles studied by a combined XAFS/DRIFTS approach. Chem. Mater. 27, 3714–3720 (2015).Article 
CAS 

Google Scholar 
Sharma, A. K., Mehara, P. & Das, P. Recent advances in supported bimetallic Pd–Au catalysts: development and applications in organic synthesis with focused catalytic action study. ACS Catal. 12, 6672–6701 (2022).Article 
CAS 

Google Scholar 
Zhou, C. et al. Dynamical study of adsorbate-induced restructuring kinetics in bimetallic catalysts using the PdAu(111) model system. J. Am. Chem. Soc. 144, 15132–15142 (2022).Article 
CAS 
PubMed 

Google Scholar 
Filez, M. et al. Kinetics of lifetime changes in bimetallic nanocatalysts revealed by quick x-ray absorption spectroscopy. Angew. Chem. Int. Ed. 57, 12430–12434 (2018).Article 
CAS 

Google Scholar 
Urakawa, A., Bürgi, T. & Baiker, A. Sensitivity enhancement and dynamic behavior analysis by modulation excitation spectroscopy: Principle and application in heterogeneous catalysis. Chem. Eng. Sci. 63, 4902–4909 (2008).Article 
CAS 

Google Scholar 
Ferri, D. et al. First steps in combining modulation excitation spectroscopy with synchronous dispersive EXAFS/DRIFTS/mass spectrometry for in situ time resolved study of heterogeneous catalysts. Phys. Chem. Chem. Phys. 12, 5634–5646 (2010).Article 
CAS 
PubMed 

Google Scholar 
Urakawa, A., Bürgi, T. & Baiker, A. Kinetic analysis using square-wave stimulation in modulation excitation spectroscopy: Mixing property of a flow-through PM-IRRAS cell. Chem. Phys. 324, 653–658 (2006).Article 
CAS 

Google Scholar 
Chiarello, G. L. & Ferri, D. Modulated excitation extended X-ray absorption fine structure spectroscopy. Phys. Chem. Chem. Phys. 17, 10579–10591 (2015).Article 
CAS 
PubMed 

Google Scholar 
Müller, P. & Hermans, I. Applications of modulation excitation spectroscopy in heterogeneous catalysis. Ind. Eng. Chem. Res. 56, 1123–1136 (2017).Article 

Google Scholar 
Ferri, D., Newton, M. A. & Nachtegaal, M. Modulation excitation x-ray absorption spectroscopy to probe surface species on heterogeneous catalysts. Top. Catal. 54, 1070–1078 (2011).Article 
CAS 

Google Scholar 
Vogt, C. et al. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 1, 127–134 (2018).Article 
CAS 

Google Scholar 
Vogt, C. et al. Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis. Nat. Commun. 12, 7096 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
König, C. F., van Bokhoven, J. A., Schildhauer, T. J. & Nachtegaal, M. Quantitative analysis of modulated excitation X-ray absorption spectra: enhanced precision of EXAFS fitting. J. Phys. Chem. C. 116, 19857–19866 (2012).Article 

Google Scholar 
van der Hoeven, J. E. S. et al. Entropic control of HD exchange rates over dilute Pd-in-Au alloy nanoparticle catalysts. ACS Catal. 11, 6971–6981 (2021).Article 

Google Scholar 
Guan, E. et al. New role of Pd hydride as a sensor of surface Pd distributions in Pd−Au catalysts. ChemCatChem 12, 717–721 (2019).Article 

Google Scholar 
Silva, T. A. et al. From AuPd nanoparticle alloys towards core‐shell motifs with enhanced alcohol oxidation activity. ChemCatChem 15, e202300180 (2023).Article 
CAS 

Google Scholar 
Knudsen, J. et al. Stroboscopic operando spectroscopy of the dynamics in heterogeneous catalysis by event-averaging. Nat. Commun. 12, 6117 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smolentsev, G., Guilera, G., Tromp, M., Pascarelli, S. & Soldatov, A. V. Local structure of reaction intermediates probed by time-resolved x-ray absorption near edge structure spectroscopy. J. Chem. Phys. 130, 174508 (2009).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wang, Q., Hanson, J. C. & Frenkel, A. I. Solving the structure of reaction intermediates by time-resolved synchrotron x-ray absorption spectroscopy. J. Chem. Phys. 129, 234502 (2008).Article 
ADS 
PubMed 

Google Scholar 
Timoshenko, J., Keller, K. R. & Frenkel, A. I. Determination of bimetallic architectures in nanometer-scale catalysts by combining molecular dynamics simulations with x-ray absorption spectroscopy. J. Chem. Phys. 146, 114201 (2017).Article 
ADS 
PubMed 

Google Scholar 
Marchionni, V., Ferri, D., Krocher, O. & Wokaun, A. Increasing the sensitivity to short-lived species in a modulated excitation experiment. Anal. Chem. 89, 5801–5809 (2017).Article 
CAS 
PubMed 

Google Scholar 
Frenkel, A. I. et al. Direct separation of short range order in intermixed nanocrystalline and amorphous phases. Phys. Rev. Lett. 89, 285503 (2002).Article 
PubMed 

Google Scholar 
Xu, W. et al. Approach to electrochemical modulating differential extended X-ray absorption fine structure. J. Synchrotron Radiat. 29, 1065–1073 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chee, S. W., Arce-Ramos, J. M., Li, W., Genest, A. & Mirsaidov, U. Structural changes in noble metal nanoparticles during CO oxidation and their impact on catalyst activity. Nat. Commun. 11, 2133 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kinnunen, N. M., Hirvi, J. T., Suvanto, M. & Pakkanen, T. A. Role of the interface between Pd and PdO in methane dissociation. J. Phys. Chem. C. 115, 19197–19202 (2011).Article 
CAS 

Google Scholar 
Paredis, K. et al. Structure, chemical composition, and reactivity correlations during the in situ oxidation of 2-Propanol. J. Am. Chem. Soc. 133, 6728–6735 (2011).Article 
CAS 
PubMed 

Google Scholar 
Rybakov, A. A., Bryukhanov, I. A., Trubnikov, D. N., Todorova, S. & Larin, A. V. Partial Palladium oxidation over various oxide supports for a higher reactivity of PdO with respect to CH4. J. Phys. Chem. C. 126, 13132–13146 (2022).Article 
CAS 

Google Scholar 
Rodriguez, J. A., Hanson, J. C., Frenkel, A. I., Kim, J. Y. & Perez, M. Experimental and theoretical studies on the reaction of H(2) with NiO: role of O vacancies and mechanism for oxide reduction. J. Am. Chem. Soc. 124, 346–354 (2002).Article 
CAS 
PubMed 

Google Scholar 
Kim, H. Y. & Henkelman, G. CO adsorption-driven surface segregation of Pd on Au/Pd bimetallic surfaces: role of defects and effect on CO oxidation. ACS Catal. 3, 2541–2546 (2013).Article 
CAS 

Google Scholar 
Saint-Lager, M.-C. et al. Oxygen-induced changes of the Au30Pd70(110) surface structure and composition under increasing O2 pressure. J. Phys. Chem. C. 122, 22588–22596 (2018).Article 
CAS 

Google Scholar 
De Coster, V., Srinath, N. V., Yazdani, P., Poelman, H. & Galvita, V. V. Modulation engineering: stimulation design for enhanced kinetic information from modulation-excitation experiments on catalytic systems. ACS Catal. 13, 5084–5095 (2023).Article 

Google Scholar 
Owen C. J., et al. Unraveling the catalytic effect of hydrogen adsorption on Pt nanoparticle shape-change. arXiv preprint arXiv:230600901 (2023)Routh, P. K., Liu, Y., Marcella, N., Kozinsky, B. & Frenkel, A. I. Latent representation learning for structural characterization of catalysts. J. Phys. Chem. Lett. 12, 2086–2094 (2021).Article 
CAS 
PubMed 

Google Scholar 
Routh, P. K., Marcella, N. & Frenkel, A. I. Speciation of nanocatalysts using X-ray absorption spectroscopy assisted by machine learning. J. Phys. Chem. C. 127, 5653–5662 (2023).Article 
CAS 

Google Scholar 
Luneau, M. et al. Dilute Pd/Au alloy nanoparticles embedded in colloid-templated porous SiO2: stable Au-based oxidation catalysts. Chem. Mater. 31, 5759–5768 (2019).Article 
CAS 

Google Scholar 
van der Hoeven, J. E. S. et al. Structural control over bimetallic core-shell nanorods for surface-enhanced Raman Spectroscopy. ACS Omega 6, 7034–7046 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Müller, O., Nachtegaal, M., Just, J., Lützenkirchen-Hecht, D. & Frahm, R. Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J. Synchrotron Radiat. 23, 260–266 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Clark, A. H., Imbao, J., Frahm, R. & Nachtegaal, M. ProQEXAFS: a highly optimized parallelized rapid processing software for QEXAFS data. J. Synchrotron Radiat. 27, 551–557 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Chastain, J. & King, R. C. Jr Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp. 40, 221 (1992).
Google Scholar 

Hot Topics

Related Articles