Enantioselective synthesis of γ-chiral amides via copper-catalyzed reductive relay hydroaminocarbonylation

Larock, R. C. Comprehensive organic transformations (Wiley-VCH, 1999).Benz, G. Synthesis of amides and related compounds: comprehensive organic synthesis (Pergamon, 1991).Lundberg, H., Tinnis, F., Selander, N. & Adolfsson, H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev. 43, 2714–2742 (2014).Article 
CAS 
PubMed 

Google Scholar 
Humphrey, J. M. & Chamberlin, A. R. Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 97, 2243–2266 (1997).Article 
CAS 
PubMed 

Google Scholar 
Bray, B. L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. 2, 587–593 (2003).CAS 

Google Scholar 
Ge, Y. et al. Nat. Synth https://doi.org/10.1038/s44160-023-00411-6 (2023).de Figueiredo, R. M., Suppo, J.-S. & Campagne, J.-M. Nonclassical routes for amide bond formation. Chem. Rev. 116, 12029–12122 (2016).Article 
PubMed 

Google Scholar 
Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1, 55–68 (1999).Article 
CAS 
PubMed 

Google Scholar 
Carey, J. S., Laffan, D., Thomson, C. & Williams, M. T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem. 4, 2337–2347 (2006).Article 
CAS 
PubMed 

Google Scholar 
Ertl, P., Altmann, E. & McKenna, J. M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem. 63, 8408–8418 (2020).Article 
CAS 
PubMed 

Google Scholar 
Evidente, A., Cimmino, A. & Andolfi, A. The effect of stereochemistry on the biological activity of natural phytotoxins, fungicides, insecticides and herbicides. Chirality 25, 59–78 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kumar, R., Hassan, M. & Pahuja, K. Effects of stereoisomers on drug activity. Am. J. Biomed. Sci. Res 13, 220–222 (2021).Article 

Google Scholar 
Cai, S., Zhang, H. & Huang, H. Transition-metal-catalyzed Hydroaminocarbonylations of alkenes and alkynes. Trends Chem. 3, 218–230 (2021).Article 
CAS 

Google Scholar 
Wu, X.-F., Han, B., Ding, K., Liu Z. eds. The chemical transformations of C1 compounds (Wiley-VCH Weinheim) (2022).Wu, X.-F. et al. Transition-metal-catalyzed carbonylation reactions of Olefins and Alkynes: A personal account. Acc. Chem. Res. 47, 1041–1053 (2014).Article 
CAS 
PubMed 

Google Scholar 
Jiménez-Rodriguez, C. et al. Selective formation of α,ω-ester amides from the aminocarbonylation of castor oil derived methyl 10-undecenoate and other unsaturated substrates. Catal. Sci. Technol. 4, 2332–2339 (2014).Article 

Google Scholar 
Dong, K. et al. Rh(I)-catalyzed hydroamidation of Olefins via selective activation of N–H bonds. Aliphatic Amines J. Am. Chem. Soc. 137, 6053–6058 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhang, G., Gao, B. & Huang, H. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines. Angew. Chem. Int. Ed. 54, 7657–7661 (2015).Article 
CAS 

Google Scholar 
Gao, B., Zhang, G., Zhou, X. & Huang, H. Palladium-catalyzed regiodivergent hydroaminocarbonylation of alkenes to primary amides with ammonium chloride. Chem. Sci. 9, 380–386 (2018).Article 
CAS 
PubMed 

Google Scholar 
Yang, H.-Y., Yao, Y.-H., Chen, M., Ren, Z.-H. & Guan, Z.-H. Palladium-catalyzed Markovnikov Hydroaminocarbonylation of 1,1-Disubstituted and 1,1,2-Trisubstituted Alkenes for formation of amides. Quat. Carbon J. Am. Chem. Soc. 143, 7298–7305 (2021).Article 
CAS 

Google Scholar 
Yao, Y.-H. et al. Asymmetric Markovnikov Hydroaminocarbonylation of alkenes enabled by palladium-monodentate phosphoramidite catalysis. J. Am. Chem. Soc. 143, 85–91 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yuan, Y. et al. Copper-catalyzed carbonylative hydroamidation of styrenes to branched amides. Angew. Chem. Int. Ed. 59, 22441–22445 (2020).Article 
CAS 

Google Scholar 
Yuan, Y., Zhao, F. & Wu, X.-F. Copper-catalyzed enantioselective carbonylation toward α-chiral secondary amides. Chem. Sci. 12, 12676–12681 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Yuan, Y., Zhang, Y., Li, W., Zhao, Y. & Wu, X.-F. Regioselective and Enantioselective copper-catalyzed hydroaminocarbonylation of unactivated alkenes and alkynes. Angew. Chem. Int. Ed. e202309993 (2023)Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z.-X., Bai, X.-Y., Yao, H.-C. & Li, B.-J. Synthesis of amides with remote stereocenters by catalytic asymmetric γ-Alkynylation of α,β-unsaturated amides. J. Am. Chem. Soc. 138, 14872–14875 (2016).Article 
CAS 
PubMed 

Google Scholar 
Zhao, W., Chen, K.-Z., Li, A.-Z. & Li, B.-J. Remote stereocenter through amide-directed, rhodium-catalyzed enantioselective hydroboration of unactivated. Intern. Alkenes. J. Am. Chem. Soc. 144, 13071–13078 (2022).Article 
CAS 

Google Scholar 
Zultanski, S. L. & Fu, G. C. Catalytic asymmetric γ-Alkylation of carbonyl compounds via stereoconvergent Suzuki cross-couplings. J. Am. Chem. Soc. 133, 15362–15364 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yorimitsu, H. & Oshima, K. Recent progress in asymmetric allylic substitutions catalyzed by chiral copper complexes. Angew. Chem. Int. Ed. 44, 4435–4439 (2005).Article 
CAS 

Google Scholar 
Ito, H., Ito, S., Sasaki, Y., Matsuura, K. & Sawamura, M. Copper-catalyzed enantioselective substitution of allylic carbonates with Diboron: An efficient route to optically active α-Chiral Allylboronates. J. Am. Chem. Soc. 129, 14856–14857 (2007).Article 
CAS 
PubMed 

Google Scholar 
Guzman-Martinez, A. & Hoveyda, A. H. Enantioselective synthesis of allylboronates bearing a tertiary or quaternary B-substituted stereogenic carbon by NHC-Cu-catalyzed substitution reactions. J. Am. Chem. Soc. 132, 10634–10637 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ito, H., Kunii, S. & Sawamura, M. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization. Nat. Chem. 2, 972–976 (2010).Article 
CAS 
PubMed 

Google Scholar 
Zhu, S., Niljianskul, N. & Buchwald, S. L. A direct approach to amines with remote stereocentres by enantioselective CuH-catalysed reductive relay hydroamination. Nat. Chem. 8, 144–150 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Han, J. T., Lee, J. Y. & Yun, J. Asymmetric synthesis of γ-chiral borylalkanes via sequential reduction/hydroboration using a single copper catalyst. Chem. Sci. 11, 8961–8965 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ito, H., Kosaka, Y., Nonoyama, K., Sasaki, Y. & Sawamura, M. Synthesis of optically active boron–silicon bifunctional cyclopropane derivatives through enantioselective Copper(I)-catalyzed reaction of allylic carbonates with a diboron derivative. Angew. Chem. Int. Ed. 47, 7424–7427 (2008).Article 
CAS 

Google Scholar 
Jia, T. et al. A Cu/Pd cooperative catalysis for enantioselective allylboration alkenes. J. Am. Chem. Soc. 137, 13760–13763 (2015).Article 
CAS 
PubMed 

Google Scholar 
Pirnot, M. T., Wang, Y.-M. & Buchwald, S. L. Copper hydride catalyzed hydroamination of alkenes and alkynes. Angew. Chem. Int. Ed. 55, 48–57 (2016).Article 
ADS 
CAS 

Google Scholar 
Liu, R. Y. & Buchwald, S. L. CuH-Catalyzed Olefin functionalization: from hydroamination to carbonyl addition. Acc. Chem. Res. 53, 1229–1243 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dong, X.-Y. et al. A general asymmetric copper-catalysed Sonogashira C(sp3)–C(sp) coupling. Nat. Chem. 11, 1158–1166 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, L.-L. et al. A general copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling. Nat. Synth. 2, 430–438 (2023).Article 
ADS 

Google Scholar 
Simmons, B. J., Hoffmann, M., Hwang, J., Jackl, M. K. & Garg, N. K. Nickel-catalyzed reduction of secondary and tertiary amides. Org. Lett. 19, 1910–1913 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsuda, T., Hashimoto, T. & Saegusa, T. Cuprous tert-butoxide. New and useful metalation reagent. J. Am. Chem. Soc. 94, 658–659 (1972).Article 

Google Scholar 
Deutsch, C. & Krause, N. CuH-catalyzed reactions. Chem. Rev. 108, 2916–2927 (2008).Article 
CAS 
PubMed 

Google Scholar 
Noh, D., Chea, H., Ju, J. & Yun, J. Highly Regio- and enantioselective copper-catalyzed hydroboration of styrenes. Angew. Chem. Int. Ed. 48, 6062–6064 (2009).Article 
CAS 

Google Scholar 
Miki, Y., Hirano, K., Satoh, T. & Miura, M. Copper-catalyzed intermolecular regioselective hydroamination of styrenes with polymethylhydrosiloxane and hydroxylamines. Angew. Chem. Int. Ed. 52, 10830–10834 (2013).Article 
CAS 

Google Scholar 
Zhu, S., Niljianskul, N. & Buchwald, S. L. Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc. 135, 15746–15749 (2013).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles