Carbon monoxide enabling synergistic carbonylation and (hetero)aryl migration

Wu, X.-F., Han, B., Ding, K., Liu Z. eds. The Chemical Transformations of C1 Compounds (Wiley-VCH, 2022).Gabriele, B. Carbon Monoxide in Organic Synthesis: Carbonylation Chemistry (Wiley-VCH, 2021).Haynes, A. et al. Promotion of iridium-catalyzed methanol carbonylation: mechanistic studies of the Cativa process. J. Am. Chem. Soc. 126, 2847–2861 (2004).Article 
CAS 
PubMed 

Google Scholar 
Dekleva, T. W. & Forster, D. The rhodium-catalyzed carbonylation of linear primary alcohols. J. Am. Chem. Soc. 107, 3565–3567 (1985).Article 
CAS 

Google Scholar 
Zhang, S., Neumann, H. & Beller, M. Synthesis of α,β-unsaturated carbonyl compounds by carbonylation reactions. Chem. Soc. Rev. 49, 3187–3210 (2020).Article 
CAS 
PubMed 

Google Scholar 
Peng, J.-B., Wu, F.-P. & Wu, X.-F. First-row transition metal-catalyzed carbonylative transformations of carbon electrophiles. Chem. Rev. 119, 2090–2127 (2019).Article 
CAS 
PubMed 

Google Scholar 
Peng, J.-B., Qi, X. & Wu, X.-F. Visible light induced carbonylation reactions with organic dyes as the photosensitizers. ChemSusChem 9, 2279–2283 (2016).Article 
CAS 
PubMed 

Google Scholar 
Gu, X.-W., Zhang, Y., Zhao, F., Ai, H.-J. & Wu, X.-F. Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex. Chin. J. Catal. 48, 214–223 (2023).Article 
CAS 

Google Scholar 
Li, Y., Hu, Y. & Wu, X.-F. Non-noble metal-catalysed carbonylative transformations. Chem. Soc. Rev. 47, 172–194 (2018).Article 
PubMed 

Google Scholar 
Omann, L. et al. Electrophilic formylation of arenes by silylium ion-mediated activation of carbon monoxide. Angew. Chem. Int. Ed. 57, 8301–8305 (2018).Article 
CAS 

Google Scholar 
Kai, H., Iwamoto, K., Chatani, N. & Murai, S. Ynolates from the reaction of lithiosilyldiazomethane with carbon monoxide. New ketenylation reactions. J. Am. Chem. Soc. 118, 7634–7635 (1996).Article 
CAS 

Google Scholar 
Zhou, M., Zhao, H. Y., Zhang, S., Zhang, Y. & Zhang, X. Nickel-catalyzed four-component carbocarbonylation of alkenes under 1 atm of CO. J. Am. Chem. Soc. 142, 18191–18199 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhao, X. et al. Divergent aminocarbonylations of alkynes enabled by photoredox/nickel dual catalysis. Angew. Chem. Int. Ed. 60, 26511–26517 (2021).Article 
CAS 

Google Scholar 
Day, C. S., Ton, S. J., Kaussler, C., Vronning Hoffmann, D. & Skrydstrup, T. Low pressure carbonylation of benzyl carbonates and carbamates for applications in 13C isotope labeling and catalytic CO2 reduction. Angew. Chem. Int. Ed. 62, e202308238 (2023).Article 
CAS 

Google Scholar 
Tung, P. & Mankad, N. P. Light-mediated synthesis of aliphatic anhydrides by Cu-catalyzed carbonylation of alkyl halides. J. Am. Chem. Soc. 145, 9423–9427 (2023).Article 
CAS 
PubMed 

Google Scholar 
Ding, Y., Wu, J. & Huang, H. Carbonylative formal cycloaddition between alkylarenes and aldimines enabled by palladium-catalyzed double C–H bond activation. J. Am. Chem. Soc. 145, 4982–4988 (2023).Article 
CAS 
PubMed 

Google Scholar 
Torres, G. M., Liu, Y. & Arndtsen, B. A. A dual light-driven palladium catalyst: breaking the barriers in carbonylation reactions. Science 368, 318–323 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tani, A. et al. Atom-economical synthesis of unsymmetrical ketones through photocatalyzed C–H activation of alkanes and coupling with CO and electrophilic alkenes. Angew. Chem. Int. Ed. 50, 1869–1872, (2011).Article 

Google Scholar 
Matsubara, H., Kawamoto, T., Fukuyama, T. & Ryu, I. Applications of radical carbonylation and amine addition chemistry: 1,4-hydrogen transfer of 1-hydroxylallyl radicals. Acc. Chem. Res. 51, 2023–2035 (2018).Article 
CAS 
PubMed 

Google Scholar 
Yin, Z., Rabeah, J., Brückner, A. & Wu, X.-F. Gallic acid-promoted SET process for cyclobutanone oximes activation and (carbonylative-)alkylation of olefins. ACS Catal. 8, 10926–10930 (2018).Article 
CAS 

Google Scholar 
Sumino, S., Fusano, A., Fukuyama, T. & Ryu, I. Carbonylation reactions of alkyl iodides through the interplay of carbon radicals and Pd catalysts. Acc. Chem. Res. 47, 1563–1574 (2014).Article 
CAS 
PubMed 

Google Scholar 
Rojas, C. M. Molecular Rearrangements in Organic Synthesis (Wiley-VCH, 2015).Studer, A. & Bossart, M. Radical aryl migration reactions. Tetrahedron 57, 9649–9667 (2001).Article 
CAS 

Google Scholar 
Chen, Z.-M., Zhang, X.-M. & Tu, Y.-Q. Radical aryl migration reactions and synthetic applications. Chem. Soc. Rev. 44, 5220–5245 (2015).Article 
CAS 
PubMed 

Google Scholar 
Li, Z.-L., Li, X.-H., Wang, N., Yang, N.-Y. & Liu, X.-Y. Radical-mediated 1,2-formyl/carbonyl functionalization of alkenes and application to the construction of medium-sized rings. Angew. Chem. Int. Ed. 55, 15100–15104 (2016).Article 
CAS 

Google Scholar 
Sivaguru, P., Wang, Z., Zanoni, G. & Bi, X. Cleavage of carbon-carbon bonds by radical reactions. Chem. Soc. Rev. 48, 2615–2656 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kischkewitz, M., Okamoto, K., Mück-Lichtenfeld, C. & Studer, A. Radical-polar crossover reactions of vinylboron ate complexes. Science 355, 936–938 (2017).Article 
CAS 
PubMed 

Google Scholar 
Allen, A. R., Noten, E. A. & Stephenson, C. R. J. Aryl transfer strategies mediated by photoinduced electron transfer. Chem. Rev. 122, 2695–2751 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wang, D., Muck-Lichtenfeld, C., Daniliuc, C. G. & Studer, A. Radical aryl migration from boron to carbon. J. Am. Chem. Soc. 143, 9320–9326 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, Y., Du, J. & Zuo, Z. Selective C–C bond scission of ketones via visible-light-mediated cerium catalysis. Chem 6, 266–279 (2020).Article 
CAS 

Google Scholar 
Friese, F. W., Muck-Lichtenfeld, C. & Studer, A. Remote C–H functionalization using radical translocating arylating groups. Nat. Commun. 9, 2808 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, K. et al. Functional-group translocation of cyano groups by reversible C–H sampling. Nature 620, 1007–1012 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wu, X., Ma, Z., Feng, T. & Zhu, C. Radical-mediated rearrangements: past, present, and future. Chem. Soc. Rev. 50, 11577–11613 (2021).Article 
CAS 
PubMed 

Google Scholar 
Peng, J.-B., Geng, H.-Q. & Wu, X.-F. The chemistry of CO: carbonylation. Chem 5, 526–552 (2019).Article 
CAS 

Google Scholar 
Chatgilialoglu, C., Crich, D., Komatsu, M. & Ryu, I. Chemistry of acyl radicals. Chem. Rev. 99, 1991–2070 (1999).Article 
CAS 
PubMed 

Google Scholar 
Zhao, F., Gu, X.-W., Franke, R. & Wu, X.-F. Copper-catalyzed 1,2-dicarbonylative cyclization of alkenes with alkyl bromides via radical cascade process. Angew. Chem. Int. Ed. 61, e202214812 (2022).Article 
CAS 

Google Scholar 
Tsunoi, S., Ryu, I. & Sonoda, N. Remote carbonylation. The synthesis of δ-lactones from saturated alcohols and carbon monoxide. J. Am. Chem. Soc. 116, 5473–5474 (1994).Article 
CAS 

Google Scholar 
Matcha, K. & Antonchick, A. P. Metal-free cross-dehydrogenative coupling of heterocycles with aldehydes. Angew. Chem. Int. Ed. 52, 2082–2086 (2013).Article 
CAS 

Google Scholar 
Wang, Y., Zhang, J.-X. & Shu, W. Cu-catalyzed remote transarylation of amines via unstrained C–C functionalization. ACS Catal. 10, 15065–15070 (2020).Article 
CAS 

Google Scholar 
Li, J., Liu, Z., Wu, S. & Chen, Y. Acyl radical Smiles rearrangement to construct hydroxybenzophenones by photoredox catalysis. Org. Lett. 21, 2077–2080 (2019).Article 
CAS 
PubMed 

Google Scholar 
Hervieu, C. et al. Asymmetric, visible light-mediated radical sulfinyl-Smiles rearrangement to access all-carbon quaternary stereocentres. Nat. Chem. 13, 327–334 (2021).Article 
CAS 
PubMed 

Google Scholar 
Huang, H. et al. Sustainable radical cascades to synthesize difluoroalkylated pyrrolo[1,2-a]indoles. J. Org. Chem. 83, 2425–2437 (2018).Article 
CAS 
PubMed 

Google Scholar 
Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bao, Z.-P. & Wu, X.-F. Palladium-catalyzed direct carbonylation of bromoacetonitrile to synthesize 2-cyano-N-acetamide and 2-cyanoacetate compounds. Angew. Chem. Int. Ed. 62, e202301671 (2023).Article 
CAS 

Google Scholar 
Chen, S., Yuan, B., Wang, Y. & Ackermann, L. Ruthenium-catalyzed remote difunctionalization of nonactivated alkenes for double meta-C(sp2)–H/C–6(sp3)–H functionalization. Angew. Chem. Int. Ed. 62, e202301168 (2023).Article 
CAS 

Google Scholar 
Ma, X., Zhang, Q. & Zhang, W. Remote radical 1,3-, 1,4-, 1,5-, 1,6- and 1,7-difunctionalization reactions. Molecules 28, 3027 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).Article 
CAS 
PubMed 

Google Scholar 
Shu, W., Merino, E. & Nevado, C. Visible light-mediated, redox-neutral remote 1,6-difunctionalizations of alkenes. ACS Catal. 8, 6401–6406 (2018).Article 
CAS 

Google Scholar 
Qiu, J.-K. et al. Catalytic dual 1,1-H-abstraction/insertion for domino spirocyclizations. J. Am. Chem. Soc. 137, 8928–8931 (2015).Article 
CAS 
PubMed 

Google Scholar 
Yu, P. et al. Enantioselective C–H bond functionalization triggered by radical trifluoromethylation of unactivated alkene. Angew. Chem. Int. Ed. 53, 11890–11894 (2014).Article 
CAS 

Google Scholar 
Huang, L., Zheng, S.-C., Tan, B. & Liu, X.-Y. Metal-free direct 1,6- and 1,2-difunctionalization triggered by radical trifluoromethylation of alkenes. Org. Lett. 17, 1589–1592 (2015).Article 
CAS 
PubMed 

Google Scholar 
Huang, L., Lin, J.-S., Tan, B. & Liu, X.-Y. Alkene trifluoromethylation-initiated remote α-azidation of carbonyl compounds toward trifluoromethyl γ-lactam and spirobenzofuranone-lactam. ACS Catal. 5, 2826–2831 (2015).Article 
CAS 

Google Scholar 
Wang, D. & Ackermann, L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem. Sci. 13, 7256–7263 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, J. et al. Photoredox-enabled chromium-catalyzed alkene diacylations. ACS Catal. 12, 1879–1885 (2022).Article 
CAS 

Google Scholar 
Jin, S. et al. N-Heterocyclic carbene-photocatalyzed tricomponent regioselective 1,2-diacylation of alkenes illuminates the mechanistic details of the electron donor–acceptor complex-mediated radical relay processes. ACS Catal. 12, 285–294 (2021).Article 

Google Scholar 
Cheng, Y. et al. Direct 1,2-dicarbonylation of alkenes towards 1,4-diketones via photocatalysis. Angew. Chem. Int. Ed. 60, 26822–26828 (2021).Article 
CAS 

Google Scholar 
Lemmerer, M., Schupp, M., Kaiser, D. & Maulide, N. Synthetic approaches to 1,4-dicarbonyl compounds. Nat. Synth. 1, 923–935 (2022).Article 

Google Scholar 
DeMartino, M. P., Chen, K. & Baran, P. S. Intermolecular enolate heterocoupling: scope, mechanism, and application. J. Am. Chem. Soc. 130, 11546–11560 (2008).Article 
CAS 
PubMed 

Google Scholar 
Raviola, C., Protti, S., Ravelli, D. & Fagnon, M. Photogenerated acyl/alkoxycarbonyl/carbamoyl radicals for sustainable synthesis. Green Chem. 21, 748–764 (2019).Article 
CAS 

Google Scholar 
Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).Article 

Google Scholar 
Decicco, C. P., Nelson, D. J., Corbett, R. L. & Dreabit, J. C. Asymmetric synthesis of 2,3-disubstituted succinates via chiral oxazolidinone controlled displacement of α-trifluoromethanesulfonate substituted esters. J. Org. Chem. 60, 4782–4785 (1995).Article 
CAS 

Google Scholar 
Stetter, H. & Schreckenberg, M. A new method for addition of aldehydes to activated double bonds. Angew. Chem. Int. Ed. 12, 81–81 (1973).Article 

Google Scholar 
Banerjee, A., Lei, Z. & Ngai, M.-Y. Acyl radical chemistry via visible-light photoredox catalysis. Synthesis 51, 303–333 (2019).Article 
CAS 
PubMed 

Google Scholar 
Marzo, L., Ghosh, I., Esteban, F. & König, B. Metal-free photocatalyzed cross coupling of bromoheteroarenes with pyrroles. ACS Catal. 6, 6780–6784 (2016).Article 
CAS 

Google Scholar 
Feng, Q. & Song, Q. Chemoselective copper-catalyzed acylation of benzothiazoles with aryl methyl ketones. Adv. Synth. Catal. 356, 2445–2452 (2014).Article 
CAS 

Google Scholar 
Hoarau, C., Lassalas, P. & Marsais, F. DMAP-catalyzed Regel-type direct C-2 (hetero)aroylation of oxazoles and thiazoles derivatives with acid chlorides. Synlett 24, 2233–2240 (2013).Article 

Google Scholar 
Zhang, H. et al. Radical-mediated distal ipso-migration of O/S-containing heteroaryls and DFT studies for migratory aptitude. Org. Lett. 22, 5947–5952 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wang, S.-H., Tu, Y.-Q. & Wang, M. t-BuOK promoted coupling of alkynes and aldehydes: a concise synthetic method of β,γ-unsaturated enones. Tetrahedron Lett. 47, 8621–8623 (2006).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles