Heterogeneously deacetylated chitosans possess an unexpected regular pattern favoring acetylation at every third position

Wattjes, J. et al. Patterns matter part 1: Chitosan polymers with non-random patterns of acetylation. React. Funct. Polym. 151, 1–9 (2020).Article 

Google Scholar 
Raafat, D. & Sahl, H. G. Chitosan and its antimicrobial potential—a critical literature survey. Microb. Biotechnol. 2, 186–201 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goy, R. C., De, Britto, D. & Assis, O. B. G. A review of the antimicrobial activity of chitosan. Polimeros 19, 241–247 (2009).Article 
CAS 

Google Scholar 
Fuchs, K. et al. The fungal ligand chitin directly binds TLR2 and triggers inflammation dependent on oligomer size. EMBO Rep. 19, 1–14 (2018).Article 

Google Scholar 
Gubaeva, E. et al. ‘Slipped sandwich’ model for chitin and chitosan perception in Arabidopsis. Mol. Plant Microbe Interact. 31, 1145–1153 (2018).Article 
CAS 
PubMed 

Google Scholar 
Malerba, M. & Cerana, R. Recent advances of chitosan applications in plants. Polymers 10, 1–10 (2018).Article 

Google Scholar 
Sharif, R. et al. The multifunctional role of chitosan in horticultural crops; a review. Molecules 23, 1–20 (2018).Article 

Google Scholar 
Yang, R., Li, H., Huang, M., Yang, H. & Li, A. A review on chitosan-based flocculants and their applications in water treatment. Water Res. 95, 59–89 (2016).Article 
CAS 
PubMed 

Google Scholar 
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31, 603–632 (2006).Article 
CAS 

Google Scholar 
Miguel, S. P., Moreira, A. F. & Correia, I. J. Chitosan based-asymmetric membranes for wound healing: A review. Int. J. Biol. Macromol. 127, 460–475 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ali, A. & Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 109, 273–286 (2018).Article 
CAS 
PubMed 

Google Scholar 
Peniche, C., Argüelles-Monal, W. & Goycoolea, F. M. Chitin and chitosan: Major sources, properties and applications. in Monomers, Polymers and Composites from Renewable Resources (eds. Belgacem, M. N. & Gandini, A.) 517–542 (Elsevier, 2008).Heterogeneous Reaction. Encyclopædia Britannica https://www.britannica.com/science/heterogeneous-reaction (1998).Vårum, K. M., Anthonsen, M. W., Grasdalen, H. & Smidsrød, O. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohydr. Res. 211, 17–23 (1991).Article 
PubMed 

Google Scholar 
Lamarque, G., Viton, C. & Domard, A. Comparative study of the first heterogeneous deacetylation of α- and β-chitins in a multistep process. Biomacromolecules 5, 992–1001 (2004).Article 
CAS 
PubMed 

Google Scholar 
Lamarque, G., Viton, C. & Domard, A. Comparative study of the second and third heterogeneous deacetylations of α- and β-chitins in a multistep process. Biomacromolecules 5, 1899–1907 (2004).Article 
CAS 
PubMed 

Google Scholar 
Homogeneous Reaction. Encyclopædia Britannica https://www.britannica.com/science/heterogeneous-reaction (2016).Sannan, T., Kurita, K. & Iwakura, Y. Studies on chitin, 1: Solubility change by alkaline treatment and film casting. Die Makromol. Chem. 176, 1191–1195 (1975).Article 
CAS 

Google Scholar 
Kurita, K., Sannan, T. & Iwakura, Y. Studies on chitin, 4: Evidence for formation of block and random copolymers of N-Acetyl-D-glucosamine and D-glucosamine by hetero- and homogeneous hydrolyses. Die Makromol. Chem. 178, 3197–3202 (1977).Article 
CAS 

Google Scholar 
Schatz, C., Viton, C., Delair, T., Pichot, C. & Domard, A. Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules 4, 641–648 (2003).Article 
CAS 
PubMed 

Google Scholar 
Lamarque, G., Lucas, J.-M., Viton, C. & Domard, A. Physicochemical behavior of homogeneous series of acetylated chitosans in aqueous solution: Role of various structural parameters. Biomacromolecules 6, 131–142 (2005).Article 
CAS 
PubMed 

Google Scholar 
Jang, M.-K., Kong, B.-G., Jeong, Y.-I., Lee, C. H. & Nah, J.-W. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J. Polym. Sci. Part A Polym. Chem. 42, 3423–3432 (2004).Article 
ADS 
CAS 

Google Scholar 
Kaya, M. et al. On chemistry of γ-chitin. Carbohydr. Polym. 176, 177–186 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hirai, A., Odani, H. & Nakajima, A. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. 26, 87–94 (1991).Article 
CAS 

Google Scholar 
Wattjes, J., Niehues, A. & Moerschbacher, B. M. Robust enzymatic-mass spectrometric fingerprinting analysis of the fraction of acetylation of chitosans. Carbohydr. Polym. 231, 115684 (2020).Article 
CAS 
PubMed 

Google Scholar 
Vårum, K. M., Anthonsen, M. W., Grasdalen, H. & Smidsrød, O. 13C-N.m.r. studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydr. Res. 217, 19–27 (1991).Article 
PubMed 

Google Scholar 
Weinhold, M. X., Sauvageau, J. C. M., Kumirska, J. & Thöming, J. Studies on acetylation patterns of different chitosan preparations. Carbohydr. Polym. 78, 678–684 (2009).Article 
CAS 

Google Scholar 
Kumirska, J. et al. Determination of the pattern of acetylation of chitosan samples: Comparison of evaluation methods and some validation parameters. Int. J. Biol. Macromol. 45, 56–60 (2009).Article 
CAS 

Google Scholar 
Bovey, F. A. & Mirau, P. A. NMR of Polymers 1st edn, 459 (Academic Press, 1996).Sashiwa, H., Saimoto, H., Shigemasa, Y., Ogawa, R. & Tokura, S. Distribution of the acetamide group in partially deacetylated chitins. Carbohydr. Polym. 16, 291–296 (1991).Article 
CAS 

Google Scholar 
Sashiwa, H., Saimoto, H., Shigemasa, Y. & Tokura, S. N-Acetyl group distribution in partially deacetylated chitins prepared under homogeneous conditions. Carbohydr. Res. 242, 167–172 (1993).Article 
CAS 
PubMed 

Google Scholar 
Aiba, S. Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. Int. J. Biol. Macromol. 13, 40–44 (1991).Article 
CAS 
PubMed 

Google Scholar 
Aiba, S. Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int. J. Biol. Macromol. 14, 225–228 (1992).Article 
CAS 
PubMed 

Google Scholar 
Pacheco, N. et al. Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules 12, 3285–3290 (2011).Article 
CAS 
PubMed 

Google Scholar 
Ottøy, M. H., Vårum, K. M. & Smidsrød, O. Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr. Polym. 29, 17–24 (1996).Article 

Google Scholar 
Lamarque, G., Cretenet, M., Viton, C. & Domard, A. New route of deacetylation of α- and β-chitins by means of freeze−pump out−thaw cycles. Biomacromolecules 6, 1380–1388 (2005).Article 
CAS 
PubMed 

Google Scholar 
Wattjes, J. et al. Enzymatic production and enzymatic-mass spectrometric fingerprinting analysis of chitosan polymers with different nonrandom patterns of acetylation. J. Am. Chem. Soc. 141, 3137–3145 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kohlhoff, M. et al. Chitinosanase: A fungal chitosan hydrolyzing enzyme with a new and unusually specific cleavage pattern. Carbohydr. Polym. 174, 1121–1128 (2017).Article 
CAS 
PubMed 

Google Scholar 
Sørbotten, A., Horn, S. J., Eijsink, V. G. H. & Vårum, K. M. Degradation of chitosans with chitinase B from Serratia marcescens. FEBS J. 272, 538–549 (2005).Article 
PubMed 

Google Scholar 
Sasaki, C., Vårum, K. M., Itoh, Y., Tamoi, M. & Fukamizo, T. Rice chitinases: sugar recognition specificities of the individual subsites. Glycobiology 16, 1242–1250 (2006).Article 
CAS 
PubMed 

Google Scholar 
Heggset, E. B., Hoell, I. A., Kristoffersen, M., Eijsink, V. G. H. & Vårum, K. M. Degradation of chitosans with chitinase G from Streptomyces coelicolor A3(2): Production of chito-oligosaccharides and insight into subsite specificities. Biomacromolecules 10, 892–899 (2009).Article 
CAS 
PubMed 

Google Scholar 
Davies, G. J., Wilson, K. S. & Henrissat, B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321, 557–559 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hellmann, M. J., Moerschbacher, B. M. & Cord-Landwehr, S. Fast insights into chitosan-cleaving enzymes by simultaneous analysis of polymers and oligomers through size exclusion chromatography. Sci. Rep. 14, 1–11 (2024).Article 

Google Scholar 
Synowiecki, J. & Al-Khateeb, N. A. A. Q. Mycelia of Mucor rouxii as a source of chitin and chitosan. Food Chem. 60, 605–610 (1997).Article 
CAS 

Google Scholar 
Hu, K.-J., Hu, J.-L., Ho, K.-P. & Yeung, K.-W. Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydr. Polym. 58, 45–52 (2004).Article 
CAS 

Google Scholar 
Lecointe, K., Cornu, M., Leroy, J., Coulon, P. & Sendid, B. Polysaccharides cell wall architecture of Mucorales. Front. Microbiol. 10, 1–8 (2019).Article 

Google Scholar 
Weikert, T., Niehues, A., Cord-Landwehr, S., Hellmann, M. J. & Moerschbacher, B. M. Reassessment of chitosanase substrate specificities and classification. Nat. Commun. 8, 1698 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Regel, E. K., Weikert, T., Niehues, A., Moerschbacher, B. M. & Singh, R. Protein‐engineering of chitosanase from Bacillus sp. MN to alter its substrate specificity. Biotechnol. Bioeng. 115, 863–873 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gercke, D., Regel, E. K., Singh, R. & Moerschbacher, B. M. Rational protein design of Bacillus sp. MN chitosanase for altered substrate binding and production of specific chitosan oligomers. J. Biol. Eng. 13, 23 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Bußwinkel, F., Goñi, O., Cord-Landwehr, S., O’Connell, S. & Moerschbacher, B. M. Endochitinase 1 (Tv-ECH1) from Trichoderma virens has high subsite specificities for acetylated units when acting on chitosans. Int. J. Biol. Macromol. 114, 453–461 (2018).Article 
PubMed 

Google Scholar 
Eide, K. B. et al. Human chitotriosidase-catalyzed hydrolysis of chitosan. Biochemistry 51, 487–495 (2012).Article 
CAS 
PubMed 

Google Scholar 
Eide, K. B., Lindbom, A. R., Eijsink, V. G. H., Norberg, A. L. & Sørlie, M. Analysis of productive binding modes in the human chitotriosidase. FEBS Lett. 587, 3508–3513 (2013).Article 
CAS 
PubMed 

Google Scholar 
Gorzelanny, C., Pöppelmann, B., Pappelbaum, K., Moerschbacher, B. M. & Schneider, S. W. Human macrophage activation triggered by chitotriosidase-mediated chitin and chitosan degradation. Biomaterials 31, 8556–8563 (2010).Article 
CAS 
PubMed 

Google Scholar 
Vårum, K. M. & Ottøy, M. H. & Smidsrød, O. Acid hydrolysis of chitosans. Carbohydr. Polym. 46, 89–98 (2001).Einbu, A., Grasdalen, H. & Vårum, K. M. Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid. Carbohydr. Res. 342, 1055–1062 (2007).Article 
CAS 
PubMed 

Google Scholar 
Hussain, I., Singh, T. & Chittenden, C. Preparation of chitosan oligomers and characterization: their antifungal activities and decay resistance. Holzforschung 66, 119–125 (2012).Article 
CAS 

Google Scholar 
Gorbet, M. B. & Sefton, M. V. Endotoxin: The uninvited guest. Biomaterials 26, 6811–6817 (2005).Article 
CAS 
PubMed 

Google Scholar 
Richter, C., Cord-Landwehr, S., Singh, R. & Moerschbacher, B. M. Dissecting and finetuning bioactivities of chitosans by enzymatic modification. Carbohydr. Polym. (submitted in parallel to this manuscript).Bahrke, S. et al. Sequence analysis of chitooligosaccharides by matrix-assisted laser desorption ionization postsource decay mass spectrometry. Biomacromolecules 3, 696–704 (2002).Article 
CAS 
PubMed 

Google Scholar 
Tabata, E. et al. Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations. Sci. Rep. 9, 15609 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wakita, S. et al. Mouse acidic chitinase effectively degrades random-type chitosan to chitooligosaccharides of variable lengths under stomach and lung tissue pH conditions. Molecules 26, 6706 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sannan, T., Kurita, K. & Iwakura, Y. Studies on chitin, 2: Effect of deacetylation on solubility. Die Makromol. Chem. 177, 3589–3600 (1976).Article 
CAS 

Google Scholar 
Jiang, C. J. & Xu, M. Q. Kinetics of heterogeneous deacetylation of β-chitin. Chem. Eng. Technol. 29, 511–516 (2006).Article 
CAS 

Google Scholar 
de Souza, J. R. & Giudici, R. Effect of diffusional limitations on the kinetics of deacetylation of chitin/chitosan. Carbohydr. Polym. 254, 117278 (2021).Article 
PubMed 

Google Scholar 
Roberts, G. A. F. in Advances in Chitin Science Vol. II (eds. Domard, A., Roberts, G. A. F. & Vårum, K. M.) 22–31 (Jaques André, 1997).Novikov, V. Y., Derkach, S. R., Konovalova, I. N., Dolgopyatova, N. V. & Kuchina, Y. A. Mechanism of heterogeneous alkaline deacetylation of chitin: A review. Polymers 15, 1–23 (2023).Article 

Google Scholar 
Lamarque, G., Chaussard, G. & Domard, A. Thermodynamic aspects of the heterogeneous deacetylation of β-chitin: Reaction mechanisms. Biomacromolecules 8, 1942–1950 (2007).Article 
CAS 
PubMed 

Google Scholar 
Sreekumar, S. et al. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat. Commun. 13, 7125 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Basa, S. et al. The pattern of acetylation defines the priming activity of chitosan tetramers. J. Am. Chem. Soc. 142, 1975–1986 (2020).Article 
CAS 
PubMed 

Google Scholar 
Urs, M. J., Moerschbacher, B. M. & Cord-Landwehr, S. Quantitative enzymatic-mass spectrometric analysis of the chitinous polymers in fungal cell walls. Carbohydr. Polym. 301, 120304 (2023).Article 
CAS 
PubMed 

Google Scholar 
van Leeuwe, T. M. et al. A seven-membered cell wall related transglycosylase gene family in Aspergillus niger is relevant for cell wall integrity in cell wall mutants with reduced α-glucan or galactomannan. Cell Surf. 6, 100039 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Moussa, A., Crépet, A., Ladavière, C. & Trombotto, S. Reducing-end “clickable” functionalizations of chitosan oligomers for the synthesis of chitosan-based diblock copolymers. Carbohydr. Polym. 219, 387–394 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kösters, M. et al. pymzML v2.0: introducing a highly compressed and seekable gzip format. Bioinformatics 34, 2513–2514 (2018).Article 
PubMed 

Google Scholar 
Lemke, P., Moerschbacher, B. M. & Singh, R. Transcriptome analysis of Solanum tuberosum genotype RH89-039-16 in response to chitosan. Front. Plant Sci. 11, 1–18 (2020).Article 

Google Scholar 
Hellmann, M. J., Moerschbacher, B. M. & Cord‐Landwehr, S. LCP simulator: An easy-to-use web tool to simulate binary linear copolymers and their behavior during analysis and enzymatic cleavage. SSRN Prepr. https://doi.org/10.2139/ssrn.4709938 (2024).

Hot Topics

Related Articles