Helical peptide structure improves conductivity and stability of solid electrolytes

Sun, H. T. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019).Article 

Google Scholar 
Sun, Y. L., Liu, B., Liu, L. Y. & Yan, X. B. Ions transport in electrochemical energy storage devices at low temperatures. Adv. Funct. Mater. 32, 2109568 (2022).Article 
CAS 

Google Scholar 
Xiao, K., Jiang, L. & Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 3, 2364–2380 (2019).Article 
CAS 

Google Scholar 
Chen, J. et al. Localized electrons enhanced ion transport for ultrafast electrochemical energy storage. Adv. Mater. 32, e1905578 (2020).Article 
PubMed 

Google Scholar 
Yan, C. et al. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage. Adv. Mater. 29, 1703909 (2017).Article 

Google Scholar 
Lin, P. & Yan, F. Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24, 34–51 (2012).Article 
PubMed 

Google Scholar 
Jentsch, T. J. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat. Rev. Mol. Cell Biol. 17, 293–307 (2016).Article 
CAS 
PubMed 

Google Scholar 
Ratner, M. A. & Shriver, D. F. Ion-transport in solvent-free polymers. Chem. Rev. 88, 109–124 (1988).Article 
CAS 

Google Scholar 
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).Article 
CAS 
PubMed 

Google Scholar 
Shen, C. T., Zhao, Q. J., Shan, N. S., Jing, B. B. & Evans, C. M. Conductivity–modulus–Tg relationships in solvent‐free, single lithium ion conducting network electrolytes. J. Polym. Sci. 58, 2376–2388 (2020).Article 
CAS 

Google Scholar 
Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).Article 
CAS 
PubMed 

Google Scholar 
Sun, C. G. et al. Fast lithium ion transport in solid polymer electrolytes from polysulfide-bridged copolymers. Nano Energy 75, 104976 (2020).Article 
CAS 

Google Scholar 
Sharon, D. et al. Intrinsic ion transport properties of block copolymer electrolytes. ACS Nano 14, 8902–8914 (2020).Article 
CAS 
PubMed 

Google Scholar 
Liu, D. et al. Enhancing ionic conductivity in tablet–bottlebrush block copolymer electrolytes with well-aligned nanostructures via solvent vapor annealing. J. Mater. Chem. C. 10, 4247–4256 (2022).Article 
CAS 

Google Scholar 
Jia, D. et al. Multifunctional polymer bottlebrush-based gel polymer electrolytes for lithium metal batteries. Mater. Today Nano 15, 100128 (2021).Article 
CAS 

Google Scholar 
Deng, C. T. et al. Role of molecular architecture on ion transport in ethylene oxide-based polymer electrolytes. Macromolecules 54, 2266–2276 (2021).Article 
CAS 

Google Scholar 
Evans, C. M., Bridges, C. R., Sanoja, G. E., Bartels, J. & Segalman, R. A. Role of tethered ion placement on polymerized ionic liquid structure and conductivity: pendant versus backbone charge placement. ACS Macro Lett. 5, 925–930 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sangoro, J. R. et al. Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter 10, 3536–3540 (2014).Article 
CAS 
PubMed 

Google Scholar 
Jones, S. D. et al. Design of polymeric zwitterionic solid electrolytes with superionic lithium transport. ACS Cent. Sci. 8, 169–175 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leigh, T. & Fernandez-Trillo, P. Helical polymers for biological and medical applications. Nat. Rev. Chem. 4, 291–310 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ekladious, I., Colson, Y. L. & Grinstaff, M. W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 18, 273–294 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gao, Y. et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano 14, 3442–3450 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wang, M. X. et al. Conductance-stable and integrated helical fiber electrodes toward stretchy energy storage and self-powered sensing utilization. Chem. Eng. J. 457, 141164 (2023).Article 
CAS 

Google Scholar 
Liu, Y. S. et al. Controllable synthesis of Co@CoOx/helical nitrogen-doped carbon nanotubes toward oxygen reduction reaction as binder-free cathodes for Al–air batteries. ACS Appl. Mater. Interfaces 12, 16512–16520 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhao, M. Q. et al. Hierarchical vine-tree-like carbon nanotube architectures: in-situ CVD self-assembly and their use as robust scaffolds for lithium–sulfur batteries. Adv. Mater. 26, 7051–7058 (2014).Article 
CAS 
PubMed 

Google Scholar 
Jiang, Y. J. et al. ‘Metaphilic’ cell-penetrating polypeptide–vancomycin conjugate efficiently eradicates intracellular bacteria via a dual mechanism. ACS Cent. Sci. 6, 2267–2276 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, Y., Chen, Y., Song, Z., Tan, Z. & Cheng, J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug. Deliv. Rev. 170, 261–280 (2021).Article 
CAS 
PubMed 

Google Scholar 
Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).Article 
CAS 
PubMed 

Google Scholar 
Lightfoot, P., Mehta, M. A. & Bruce, P. G. Crystal structure of the polymer electrolyte poly(ethylene oxide)3:LiCF3SO3. Science 262, 883–885 (1993).Article 
CAS 
PubMed 

Google Scholar 
Ma, Y. A., Shen, Y. & Li, Z. B. Different cell behaviors induced by stereochemistry on polypeptide brush grafted surfaces. Mater. Chem. Front. 1, 846–851 (2017).Article 
CAS 

Google Scholar 
Papadopoulos, P., Floudas, G., Klok, H. A., Schnell, I. & Pakula, T. Self-assembly and dynamics of poly(γ-benzyl-l-glutamate) peptides. Biomacromolecules 5, 81–91 (2004).Article 
CAS 
PubMed 

Google Scholar 
Kricheldorf, H. R. & Mueller, D. Secondary structure of peptides. 3. Carbon-13 NMR cross polarization/magic angle spinning spectroscopic characterization of solid polypeptides. Macromolecules 16, 615–623 (1983).Article 
CAS 

Google Scholar 
Tsutsumi, A. et al. Relaxation phenomena of poly-γ-benzyl-l-glutamate, poly-γ-methyl-l-glutamate, and copoly(γ-methyl-l-glutamate, γ-benzyl-l-glutamate). J. Macromol. Sci., B 8, 413–430 (1973).Article 

Google Scholar 
Evans, C. M., Sanoja, G. E., Popere, B. C. & Segalrnan, R. A. Anhydrous proton transport in polymerized ionic liquid block copolymers: roles of block length, ionic content, and confinement. Macromolecules 49, 395–404 (2016).Article 
CAS 

Google Scholar 
Drozd-Rzoska, A., Rzoska, S. J. & Starzonek, S. New paradigm for configurational entropy in glass-forming systems. Sci. Rep. 12, 3058 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heres, M. et al. Ion transport in glassy polymerized ionic liquids: unraveling the impact of the molecular structure. Macromolecules 52, 88–95 (2019).Article 
CAS 

Google Scholar 
Cheng, S. J. et al. Ionic aggregation in random copolymers containing phosphonium ionic liquid monomers. J. Polym. Sci. A1 50, 166–173 (2012).Article 
CAS 

Google Scholar 
Hemp, S. T. et al. Comparing ammonium and phosphonium polymerized ionic liquids: thermal analysis, conductivity, and morphology. Macromol. Chem. Phys. 214, 2099–2107 (2013).Article 
CAS 

Google Scholar 
Xia, Y. C. et al. Accelerated polymerization of N-carboxyanhydrides catalyzed by crown ether. Nat. Commun. 12, 732 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fan, F. et al. Effect of molecular weight on the ion transport mechanism in polymerized ionic liquids. Macromolecules 49, 4557–4570 (2016).Article 
CAS 

Google Scholar 
Zhao, Q. J. & Evans, C. M. Effect of molecular weight on viscosity scaling and ion transport in linear polymerized ionic liquids. Macromolecules 54, 3395–3404 (2021).Article 
CAS 

Google Scholar 
Keith, J. R., Mogurampelly, S., Aldukhi, F., Wheatle, B. K. & Ganesan, V. Influence of molecular weight on ion-transport properties of polymeric ionic liquids. Phys. Chem. Chem. Phys. 19, 29134–29145 (2017).Article 
CAS 
PubMed 

Google Scholar 
Timachova, K., Watanabe, H. & Balsara, N. P. Effect of molecular weight and salt concentration on ion transport and the transference number in polymer electrolytes. Macromolecules 48, 7882–7888 (2015).Article 
CAS 

Google Scholar 
Han, S. et al. Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 22, 1515–1522 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wada, A. Dielectric properties of polypeptide solutions. II. Relation between the electric dipole moment and the molecular weight of α helix. J. Chem. Phys. 30, 328–329 (1959).Article 
CAS 

Google Scholar 
Choi, U. H. et al. Role of chain polarity on ion and polymer dynamics: molecular volume-based analysis of the dielectric constant for polymerized norbornene-based ionic liquids. Macromolecules 53, 10561–10573 (2020).Article 
CAS 

Google Scholar 
Wilcox, K. G., Dingle, M. E., Saha, A., Hore, M. J. A. & Morozova, S. Persistence length of α-helical poly-l-lysine. Soft Matter 18, 6550–6560 (2022).Article 
CAS 
PubMed 

Google Scholar 
Choe, S. & Sun, S. X. The elasticity of α-helices. J. Chem. Phys. 122, 244912 (2005).Article 
PubMed 

Google Scholar 
Papadopoulos, P. et al. Thermodynamic confinement and α-helix persistence length in poly(γ-benzyl-l-glutamate)-b-poly(dimethyl siloxane)-b-poly(γ-benzyl-l-glutamate) triblock copolymers. Biomacromolecules 7, 618–626 (2006).Article 
CAS 
PubMed 

Google Scholar 
Zhao, Q. J., Bennington, P., Nealey, P. F., Patel, S. N. & Evans, C. M. Ion specific, thin film confinement effects on conductivity in polymerized ionic liquids. Macromolecules 54, 10520–10528 (2021).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles