A label-free quantification method for assessing sex from modern and ancient bovine tooth enamel

Horwitz, L., Cope, C. & Tchernov, E. Sexing the bones of mountain-gazelle (Gazella gazella) from prehistoric sites in the Southern Levant. Paléorient 1–12 (1990).Barden, H. E. & Maidment, S. C. Evidence for sexual dimorphism in the Stegosaurian dinosaur Kentrosaurus aethiopicus from the Upper Jurassic of Tanzania. J. Vertebr. Paleontol. 31, 641–651 (2011).Article 

Google Scholar 
Zeder, M. A. & Hesse, B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287, 2254–2257 (2000).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Berger, J. et al. Back–casting sociality in extinct species: New perspectives using mass death assemblages and sex ratios. Proc. R. Soc. Lond. Series B Biol. Sci. 268, 131–139 (2001).Pečnerová, P. et al. Genome-based sexing provides clues about behavior and social structure in the woolly mammoth. Curr. Biol. 27, 3505–3510 (2017).Article 
PubMed 

Google Scholar 
Gower, G. et al. Widespread male sex bias in mammal fossil and museum collections. Proc. Natl. Acad. Sci. 116, 19019–19024 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Clavel, B. et al. Sex in the city: Uncovering sex-specific management of equine resources from prehistoric times to the modern period in France. J. Archaeol. Sci. Rep. 41, 103341 (2022).
Google Scholar 
Ruscillo, D. Alternative methods for identifying sex from archaeological animal bone. British School at Athens Studies 37–44 (2003).Greenfield, H. J. Sexing fragmentary ungulate acetabulae. In Recent Advances in Ageing and Sexing Animal Bones, 68–86 (Oxbow Books, Oxford, 2006).Bonnan, M. F., Farlow, J. O. & Masters, S. L. Using linear and geometric morphometrics to detect intraspecific variability and sexual dimorphism in femoral shape in Alligator mississippiensis and its implications for sexing fossil Archosaurs. J. Vertebr. Paleontol. 28, 422–431 (2008).Article 

Google Scholar 
Telldahl, Y., Svensson, E. M., Götherström, A. & Storå, J. Osteometric and molecular sexing of cattle metapodia. J. Archaeol. Sci. 39, 121–127 (2012).Article 
CAS 

Google Scholar 
Handley, W. D., Chinsamy, A., Yates, A. M. & Worthy, T. H. Sexual dimorphism in the late Miocene Mihirung dromornis stirtoni (Aves: Dromornithidae) from the Alcoota local fauna of central Australia. J. Vertebr. Paleontol. 36, e1180298 (2016).Article 

Google Scholar 
Guimaraes, S. et al. A cost-effective high-throughput metabarcoding approach powerful enough to genotype 44,000 year-old rodent remains from Northern Africa. Mol. Ecol. Resources 17, 405–417 (2017).Article 
CAS 

Google Scholar 
Daly, K. G. et al. Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science 361, 85–88 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Davis, S. J. et al. An osteometrical method for sexing cattle bones: the metacarpals from 17th century Carnide, Lisbon, Portugal. Annalen des Naturhistorischen Museums in Wien. Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie 120, 367–388 (2018).Blois, J. L. & Hadly, E. A. Mammalian response to Cenozoic climatic change. Annu. Rev. Earth Planetary Sci. 37, 181–208 (2009).Article 
ADS 
CAS 

Google Scholar 
Nistelberger, H. M. et al. Sexing Viking age horses from burial and non-burial sites in Iceland using ancient DNA. J. Archaeol. Sci. 101, 115–122 (2019).Article 
CAS 

Google Scholar 
Orlando, L. et al. Ancient DNA analysis. Nat. Rev. Methods Primers 1, 14 (2021).Article 
CAS 

Google Scholar 
Gibson, C. W. et al. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 276, 31871–31875 (2001).Article 
CAS 
PubMed 

Google Scholar 
Paine, M. L. et al. Enamel biomineralization defects result from alterations to amelogenin self-assembly. J. Struct. Biol. 132, 191–200 (2000).Article 
CAS 
PubMed 

Google Scholar 
Delgado, S., Girondot, M. & Sire, J.-Y. Molecular evolution of amelogenin in mammals. J. Mol. Evolut. 60, 12–30 (2005).Article 
ADS 
CAS 

Google Scholar 
Sire, J.-Y., Davit-Béal, T., Delgado, S. & Gu, X. The origin and evolution of enamel mineralization genes. Cells Tissues Organs 186, 25–48 (2007).Article 
PubMed 

Google Scholar 
Lau, E. C., Mohandas, T. K., Shapiro, L. J., Slavkin, H. C. & Snead, M. L. Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics 4, 162–168 (1989).Article 
CAS 
PubMed 

Google Scholar 
Salido, E. C., Yen, P., Koprivnikar, K., Yu, L.-C. & Shapiro, L. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. Am. J. Hum. Genet. 50, 303 (1992).CAS 
PubMed 
PubMed Central 

Google Scholar 
Simmer, J. P. & Snead, M. L. Molecular biology of the amelogenin gene. in Dental Enamel Formation to Destruction, 59–84 (CRC Press, 2017).Ennis, S. & Gallagher, T. A pcr-based sex-determination assay in cattle based on the bovine amelogenin locus. Animal Genet. 25, 425–427 (1994).Article 
CAS 
PubMed 

Google Scholar 
Ballin, N. Z. & Madsen, K. G. Sex determination in beef by melting curve analysis of PCR amplicons from the amelogenin locus. Meat Sci. 77, 384–388 (2007).Article 
CAS 
PubMed 

Google Scholar 
Das, P. et al. Establishing gene amelogenin as sex-specific marker in yak by genomic approach. J. Genet. 98, 1–6 (2019).Article 

Google Scholar 
Iqbal, M. et al. DNA based gender identification of meat samples. J. Animal Plant Sci. 30 (2020).Fábián, R. et al. X-and Y-chromosome-specific variants of the amelogenin gene allow non-invasive sex diagnosis for the detection of pseudohermaphrodite goats. Acta Veterinaria Hungarica 65, 500–504 (2017).Article 
PubMed 

Google Scholar 
Tsai, T. et al. Identification of sex-specific polymorphic sequences in the goat amelogenin gene for embryo sexing. J. Animal Sci. 89, 2407–2414 (2011).Article 
CAS 

Google Scholar 
Pfeiffer, I. & Brenig, B. X-and Y-chromosome specific variants of the amelogenin gene allow sex determination in sheep (Ovis aries) and European red deer (Cervus elaphus). BMC Genet. 6, 1–4 (2005).Article 

Google Scholar 
Grzybowski, G. et al. A novel variant of the amelogenin gene (AMEL-X) in cattle and its implications for sex determination. Animal Sci. Papers Rep. 24, 111–118 (2006).CAS 

Google Scholar 
Fontanesi, L., Scotti, E. & Russo, V. Differences of the porcine amelogenin X and Y chromosome genes (AMELX and AMELY) and their application for sex determination in pigs. Mol. Reproduct. Develop. Incorporating Gamete Res. 75, 1662–1668 (2008).CAS 

Google Scholar 
Farahvash, T., Masoudi, A., Rezaei, H. & Tavallaei, M. AMELX and AMELY structure and application for sex determination of iranian Maral deer (Cervus elaphus maral). Iran. J. Appl. Animal Sci. 6, 963–968 (2016).CAS 

Google Scholar 
Stewart, N. A. et al. The identification of peptides by nanoLC-MS/MS from human surface tooth enamel following a simple acid etch extraction. RSC Adv. 6, 61673–61679 (2016).Article 
ADS 
CAS 

Google Scholar 
Stewart, N. A., Gerlach, R. F., Gowland, R. L., Gron, K. J. & Montgomery, J. Sex determination of human remains from peptides in tooth enamel. Proc. Natl. Acad. Sci. 114, 13649–13654 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Parker, G. J. et al. Sex estimation using sexually dimorphic amelogenin protein fragments in human enamel. J. Archaeol. Sci. 101, 169–180 (2019).Article 
CAS 

Google Scholar 
Fincham, A. G. & Moradian-Oldak, J. Recent advances in amelogenin biochemistry. Connective Tissue Res. 32, 119–124 (1995).Article 
CAS 

Google Scholar 
Sire, J.-Y., Delgado, S., Fromentin, D. & Girondot, M. Amelogenin: Lessons from evolution. Arch. Oral Biol. 50, 205–212 (2005).Article 
CAS 
PubMed 

Google Scholar 
Castiblanco, G. A. et al. Identification of proteins from human permanent erupted enamel. Eur. J. Oral Sci. 123, 390–395 (2015).Article 
CAS 
PubMed 

Google Scholar 
Froment, C. et al. Analysis of 5000 year-old human teeth using optimized large-scale and targeted proteomics approaches for detection of sex-specific peptides. J. Proteom. 211, 103548 (2020).Article 
CAS 

Google Scholar 
Rebay-Salisbury, K. et al. Child murder in the Early Bronze Age: Proteomic sex identification of a cold case from Schleinbach, Austria. Archaeol. Anthropol. Sci. 12, 1–13 (2020).Article 

Google Scholar 
Granja, R. et al. Unbalanced sex-ratio in the Neolithic individuals from the Escoural Cave (Montemor-o-Novo, Portugal) revealed by peptide analysis. Sci. Rep. 13, 19902 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gasparini, A. et al. Biological sex vs archaeological gender: Enamel peptide analysis of the horsemen of the Early Middle age necropolises of Campochiaro (Molise, Italy). J. Archaeol. Sci. Rep. 41, 103337 (2022).
Google Scholar 
Koenig, C. et al. Automated high-throughput biological sex identification from archaeological human dental enamel using targeted proteomics. BioRxiv 2024–02 (2024).Lugli, F. et al. Enamel peptides reveal the sex of the Late Antique ‘Lovers of Modena’. Sci. Rep. 9, 13130 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lugli, F. et al. Sex-related morbidity and mortality in non-adult individuals from the Early Medieval site of Valdaro (Italy): The contribution of dental enamel peptide analysis. J. Archaeol. Sci. Rep. 34, 102625 (2020).
Google Scholar 
Welker, F. et al. The dental proteome of Homo antecessor. Nature 580, 235–238 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gowland, R. et al. Sex estimation of teeth at different developmental stages using dimorphic enamel peptide analysis. Am. J. Phys. Anthropol. 174, 859–869 (2021).Article 
PubMed 

Google Scholar 
Demeter, F. et al. A Middle Pleistocene Denisovan molar from the Annamite chain of northern Laos. Nat. Comm. 13, 2557 (2022).Article 
ADS 
CAS 

Google Scholar 
Mikšík, I., Morvan, M. & Brůžek, J. Peptide analysis of tooth enamel-a sex estimation tool for archaeological, anthropological, or forensic research. J. Separation Sci. 46, 2300183 (2023).Article 

Google Scholar 
Gamble, J. A. et al. Advancing sex estimation from amelogenin: Applications to archaeological, deciduous, and fragmentary dental enamel. J. Archaeol. Sci. Rep. 54, 104430 (2024).
Google Scholar 
Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging Pongine. Nature 576, 262–265 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cappellini, E. et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574, 103–107 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hendy, J. et al. A guide to ancient protein studies. Nat. Ecol. Evolution 2, 791–799 (2018).Article 

Google Scholar 
Coutu, A. N. et al. Palaeoproteomics confirm earliest domesticated sheep in Southern Africa ca. 2000 bp. Sci. Rep. 11, 6631 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cucina, A. et al. Meta-proteomic analysis of two mammoth’s trunks by EVA technology and high-resolution mass spectrometry for an indirect picture of their habitat and the characterization of the Collagen Type I, Alpha-1 and Alpha-2 sequence. Amino Acids 54, 935–954 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Danin, A. Flora and vegetation of Israel and adjacent areas. In The Zoogeography of Israel, 30, 251–276 (Dr. W. Junk Publishers Dordrecht, The Netherlands, 1988).Lechevallier, M. (ed.) Abou Gosh et Beisamoun. Deux gisements du VII millénaire avant l’ère Chrétienne en Israël (Mém. et Trav. du Centre de Recherches Préhistoriques Français de Jérusalem 2, 1978).Bocquentin, F. et al. Renewed excavations at Beisamoun: Investigating the 7th millennium cal. BC of the Southern Levant. J. Israel Prehistoric Society 44, 5–100 (2014).
Google Scholar 
Bocquentin, F. et al. Between two worlds: The PPNB-PPNC transition in the central Levant as seen through discoveries at Beisamoun. In The Mega-project at Motza (Moza): The Neolithic and Later Occupations up to the 20th Century. New Studies in the Archaeology of Jerusalem and its Region, 163–199 (Israel Antiquities Authority, Jerusalem, 2020).Perez-Riverol, Y. et al. The pride database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles