The role of immune cells and immune related genes in the tumor microenvironment of papillary thyroid cancer and their significance for immunotherapy

Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).Article 
PubMed 

Google Scholar 
Kilfoy, B. A., Zheng, T., Holford, T. R. & Zhang, Y. International patterns and trends in thyroid cancer incidence. Cancer Causes Control 20, 521–531 (2009).Article 

Google Scholar 
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Clin. 68, 394–424 (2018).Article 

Google Scholar 
Wang, Z. & Guan, H. Hear the patient’s voice regarding implementation of thyroid cancer active surveillance in China. Thyroid Off. J. Am. Thyroid Assoc. 33, 782–784 (2023).Article 

Google Scholar 
Fagin, J. A., Longo, D. L. & Wells, S. A. Biologic and clinical perspectives on thyroid cancer. N. Engl. J. Med. 375, 1054–1067 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xiu-Bo LU. Correlative factors of lymph node metastasis in central region and cervical region of papillary thyroid carcinoma. Chinese Journal of Practical Surgery 9, 952-955 (2017)Zanocco, K. A., Hershman, J. M. & Leung, A. M. Active surveillance of low-risk thyroid cancer. JAMA 321, 2020 (2019).Article 
PubMed 

Google Scholar 
Sakai, T. et al. Active surveillance for T1bN0M0 papillary thyroid carcinoma. Thyroid 29, 59–63 (2019).Article 
PubMed 

Google Scholar 
Naoum, G. E., Morkos, M., Kim, B. & Arafat, W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol. Cancer 17, 51 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Karn, T. et al. Association between genomic metrics and immune infiltration in triple-negative breast cancer. JAMA Oncol. 3, 1707 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, X. et al. The prognostic landscape of tumor-infiltrating immune cell and immunomodulators in lung cancer. Biomed. Pharmacother. 95, 55–61 (2017).Article 
CAS 
PubMed 

Google Scholar 
Varricchi, G. et al. The immune landscape of thyroid cancer in the context of immune checkpoint inhibition. Int. J. Mol. Sci. 20, 39–34 (2019).Article 

Google Scholar 
Galdiero, M. R., Varricchi, G. & Marone, G. The immune network in thyroid cancer. OncoImmunology 5, e1168556 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Ferrari, S. M. et al. Thyroid autoimmune disorders and cancer. Semin. Cancer Biol. 64, 135–146 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gunda, V. et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer. Br. J. Cancer 119, 1223–1232 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhi, J., Yi, J., Tian, M., Wang, H. & Gao, M. Immune gene signature delineates a subclass of thyroid cancer with unfavorable clinical outcomes. Aging 12, 5733–5750 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587-d592 (2023).Article 
CAS 
PubMed 

Google Scholar 
Franco, P. I. R., Rodrigues, A. P., Menezes, L. B. & Miguel, M. P. Tumor microenvironment components: Allies of cancer progression. Pathol. Res. Pract. 216, 152729 (2020).Article 

Google Scholar 
Arneth, B. Tumor microenvironment. Medicina 56, 15 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Cendrowicz, E., Sas, Z., Bremer, E. & Rygiel, T. P. The role of macrophages in cancer development and therapy. Cancers 13, 1946 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Behnes, C. L. et al. Tumor-associated macrophages are involved in tumor progression in papillary renal cell carcinoma. Virchows Arch. Int. J. Pathol. 464, 191–196 (2014).Article 
CAS 

Google Scholar 
Zhang, Q. et al. Apoptotic SKOV3 cells stimulate M0 macrophages to differentiate into M2 macrophages and promote theproliferation and migration of ovarian cancercells by activating the ERK signaling pathway. Int. J. Mol. Med. https://doi.org/10.3892/ijmm.2019.4408 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Liotti, F., Prevete, N., Vecchio, G. & Melillo, R. M. Recent advances in understanding immune phenotypes of thyroid carcinomas: Prognostication and emerging therapies. F1000 Res. 8, 227 (2019).Article 
CAS 

Google Scholar 
Liu, Q., Sun, Z. & Chen, L. Memory T cells: Strategies for optimizing tumor immunotherapy. Protein Cell 11, 549–564 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: Intermediates, effectors, and memory cells. Science 290, 92–97 (2000).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lanzavecchia, A. & Sallusto, F. Opinion-decision making in the immune system: Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2003).Article 

Google Scholar 
Jenkins, M. K., Khoruts, A., Ingulli, E., Mueller, D. L. & Pape, K. A. In vivo activation of antigens CD4 T cells. Annu. Rev. Immunol. 19, 23–45 (2001).Article 
CAS 
PubMed 

Google Scholar 
Naoko, I. et al. CD4(+) T cells support polyfunctionality of cytotoxic CD8(+) T cells with memory potential in immunological control of tumor. Cancer Sci. 111, 1958–1968 (1958).
Google Scholar 
Deng, X., Lin, D., Zhang, X., Shen, X. & Lin, J. Profiles of immune-related genes and immune cell infiltration in the tumor microenvironment of diffuse lower-grade gliomas. J. Cell. Physiol. 235, 7321–7331 (2020).Article 
CAS 
PubMed 

Google Scholar 
Fu, C. & Jiang, A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front. Immunol. https://doi.org/10.3389/fimmu.2018.03059 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, B., Hu, J., Zhang, J. & Zhao, L. Radiation therapy regulates TCF-1 to maintain CD8+T cell stemness and promotes anti-tumor immunotherapy. Int. Immunopharmacol. 107, 108646 (2022).Article 
CAS 
PubMed 

Google Scholar 
Maimela, N. R., Liu, S. & Zhang, Y. Fates of CD8+ T cells in tumor microenvironment. World Allergy Organ. J. 17, 1–13 (2019).CAS 

Google Scholar 
Chatzopoulos, K. et al. Tumor infiltrating lymphocytes and CD8+ T cell subsets as prognostic markers in patients with surgically treated laryngeal squamous cell carcinoma. Head Neck Pathol. 14, 689–700 (2020).Article 
PubMed 

Google Scholar 
Kim, G. E., Kim, N. I., Park, M. H. & Lee, J. S. B7–H3 and B7–H4 expression in phyllodes tumors of the breast detected by RNA in situ hybridization and immunohistochemistry: Association with clinicopathological features and T-cell infiltration. Tumor Biol. https://doi.org/10.1177/1010428318815032 (2018).Article 

Google Scholar 
Gupta, P., Chen, C., Chaluvally-Raghavan, P. & Pradeep, S. B cells as an immune-regulatory signature in ovarian cancer. Cancers 11, 894 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Richard, J. Y. et al. Characterising B cell expression and prognostic significance in human papillomavirus positive oropharyngeal cancer. Oral Oncol. 150, 106687 (2024).Article 

Google Scholar 
Russick, J., Torset, C., Hemery, E. & Cremer, I. NK cells in the tumor microenvironment: Prognostic and theranostic impact. Recent advances and trends. Semin. Immunol. 48, 101407 (2020).Article 
CAS 
PubMed 

Google Scholar 
Vito, C. D., Mikulak, J. & Mavilio, D. On the way to become a natural killer cell. Front. Immunol. 10, 1812 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Bisheshar, S. K., Ruiter, E. D. D., Devriese, L. & Willems, S. The prognostic role of NK cells and their ligands in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. OncoImmunology https://doi.org/10.1080/2162402X.2020.1747345 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Melillo, R. M. et al. Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 29, 6203–6215 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kan, H. et al. Oleanolic acid inhibits the tumor progression by regulating Lactobacillus through the cytokine-cytokine receptor interaction pathway in 4T1-induced mice breast cancer model. Heliyon 10, e27028 (2024).Article 

Google Scholar 
Lena, G., Mariam, E. & Petros, C. Breaking bottlenecks for the TCR therapy of cancer. Cells 9, 2095 (2020).Article 

Google Scholar 
Florian, B. & Sai, T. R. The unexpected benefit of TCR cross-reactivity in cancer immunotherapy. Cancer Res. 83, 3168–3169 (2023).Article 

Google Scholar 
Sun, Y., Liu, W. Z., Liu, T., Feng, X. & Zhou, H. F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35, 600–604 (2015).Article 
CAS 
PubMed 

Google Scholar 
Yeung, Y. T. et al. Signaling pathways in inflammation and anti-inflammatory therapies. Curr. Pharm. Des. 24, 1449–1484 (2018).Article 
CAS 
PubMed 

Google Scholar 
Dutta, P. & Li, W. X. Role of the JAK-STAT Signalling Pathway in Cancer (Wiley, 2013).Book 

Google Scholar 
Brooks, A. J. & Putoczki, T. JAK-STAT signalling pathway in cancer. Cancers 12, 1971 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Conley-Lacomb, M. K. et al. PTEN loss mediated Akt activation promotes prostate tumor growth via CXCL12/CXCR4 signaling. Cancer Res. https://doi.org/10.1186/1476-4598-12-85 (2013).Article 

Google Scholar 
Lee, B. S., Jang, J. Y., Seo, C. & Kim, C. H. Crosstalk between head and neck cancer cells and lymphatic endothelial cells promotes tumor metastasis via CXCL5-CXCR2 signaling. FASEB J. https://doi.org/10.1096/fj.202001455R (2021).Article 
PubMed 

Google Scholar 
Metcalf, D., Begley, C. G., Johnson, G. R., Nicola, N. A. & Wang, E. A. Biologic properties in vitro of a recombinant human granulocyte-macrophage colony-stimulating factor. Blood 67, 37–45 (1986).Article 
CAS 
PubMed 

Google Scholar 
Ying Lee, Y. et al. CSF2 overexpression is associated with STAT5 phosphorylation and poor prognosis in patients with urothelial carcinoma. J. Cancer 7, 711–721 (2016).Article 

Google Scholar 
Xu, Z., Zhang, Y., Xu, M., Zheng, X. & Chi, P. Demethylation and overexpression of CSF2 are involved in immune response, chemotherapy resistance, and poor prognosis in colorectal cancer. OncoTargets Ther. 12, 11255–11269 (2019).Article 
CAS 

Google Scholar 
Figenschau, S. L. et al. ICAM1 expression is induced by proinflammatory cytokines and associated with TLS formation in aggressive breast cancer subtypes open. Sci. Rep. https://doi.org/10.1038/s41598-018-29604-2 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Gao, Y. et al. CXCL5/CXCR2 axis promotes bladder cancer cell migration and invasion by activating PI3K/AKT-induced upregulation of MMP2/MMP9. Int. J. Oncol. 47, 690–700 (2015).Article 
CAS 
PubMed 

Google Scholar 
Han, N., Yuan, X., Wu, H., Xu, H. & Wu, K. DACH1 inhibits lung adenocarcinoma invasion and tumor growth by repressing CXCL5 signaling. Oncotarget 6, 5877–5888 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Shao-Lai, Z. et al. CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils. Carcinogenesis 35, 597–605 (2014).Article 

Google Scholar 
Zhang, Q. et al. CCL19/CCR7 upregulates heparanase via specificity protein-1 (Sp1) to promote invasion of cell in lung cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 34, 2703–2708 (2013).Article 

Google Scholar 
Peng, C., Zhou, K., An, S. & Yang, J. The effect of CCL19/CCR7 on the proliferation and migration of cell in prostate cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 36, 329–335 (2015).Article 
CAS 

Google Scholar 
Mizukami, Y. et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int. J. Cancer 122, 2286–2293 (1993).Article 

Google Scholar 
Hirata, A. et al. Intratumoral IFN-α gene delivery reduces tumor-infiltrating regulatory T cells through the downregulation of tumor CCL17 expression. Cancer Gene Ther. 26, 334–343 (2018).Article 
PubMed 

Google Scholar 
Zhang, X., Wang, Y., Cao, Y., Zhang, X. & Zhao, H. Increased CCL19 expression is associated with progression in cervical cancer. Oncotarget 8, 73817–73825 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Kuhn, N. F. et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35, 473-488.e476 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Laman, D. J., Claassen, E. & Noelle, J. R. Functions of CD40 and its ligand, gp39 (CD40L). Crit. Rev. Immunol. 16, 59–108 (1996).Article 
CAS 
PubMed 

Google Scholar 
van Royen, N. et al. CD40 in coronary artery disease: A matter of macrophages?. Basic Res. Cardiol. Off. J. Ger. Assoc. Cardiovasc. Res. 111, 1–16 (2016).
Google Scholar 
He, S. et al. Expression of the co-signaling molecules CD40-CD40L and their growth inhibitory effect on pancreatic cancer in vitro. Oncol. Rep. 28, 262–268 (2012).CAS 
PubMed 

Google Scholar 
Ullenhag, G. & Loskog, A. S. I. AdCD40L—Crossing the valley of death?. Int. Rev. Immunol. 31, 289–298 (2012).Article 
CAS 
PubMed 

Google Scholar 
Aaron, M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).Article 

Google Scholar 
Ogata, H., Goto, S., Sato, K., Fujibuchi, W. & Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles