Catalytic enantioselective intramolecular hydroamination of alkenes using chiral aprotic cyclic urea ligand on manganese (II)

Tang, W. & Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 103, 3029–3070 (2003).Article 
CAS 
PubMed 

Google Scholar 
Chelucci, G., Orrù, G., Pinna, G. A. & Chiral, P. N-ligands with pyridine-nitrogen and phosphorus donor atoms. Syntheses and applications in asymmetric catalysis. Tetrahedron 59, 9471–9515 (2003).Article 
CAS 

Google Scholar 
Xie, J.-H. & Zhou, Q.-L. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions. Acc. Chem. Res. 41, 581–593 (2008).Article 
CAS 
PubMed 

Google Scholar 
Börner, A. Phosphorus Ligands In Asymmetric Catalysis: Synthesis And Application (Wiley-VCH, 2008).Hargaden, G. C. & Guiry, P. J. Recent applications of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev. 109, 2505–2550 (2009).Article 
CAS 
PubMed 

Google Scholar 
Lühr, S., Holz, J. & Börner, A. The synthesis of chiral phosphorus ligands for use in homogeneous metal catalysis. ChemCatChem 3, 1708–1730 (2011).Article 

Google Scholar 
Imamoto, T. Searching for practically useful P-chirogenic phosphine ligands. Chem. Rec. 16, 2659–2673 (2016).Article 

Google Scholar 
Xu, G., Senanayake, C. H. & Tang, W. P-chiral phosphorus ligands based on a 2,3-dihydrobenzo[d][1,3]oxaphosphole motif for asymmetric catalysis. Acc. Chem. Res. 52, 1101–1112 (2019).Article 
CAS 
PubMed 

Google Scholar 
Mellah, M., Voituriez, A. & Schulz, E. Chiral sulfur ligands for asymmetric catalysis. Chem. Rev. 107, 5133–5209 (2007).Article 
CAS 
PubMed 

Google Scholar 
Pellissier, H. Chiral sulfur-containing ligands for asymmetric catalysis. Tetrahedron 63, 1297–1330 (2007).Article 
CAS 

Google Scholar 
Dong, H.-Q., Xu, M.-H., Feng, C.-G., Sun, X.-W. & Lin, G.-Q. Recent applications of chiral N-tert-butanesulfinyl imines, chiral diene ligands and chiral sulfur–olefin ligands in asymmetric synthesis. Org. Chem. Front. 2, 73–89 (2015).Article 
CAS 

Google Scholar 
Otocka, S., Kwiatkowska, M., Madalińska, L. & Kiełbasiński, P. Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: applications in asymmetric synthesis. Chem. Rev. 117, 4147–4181 (2017).Article 
CAS 
PubMed 

Google Scholar 
Sierra, M. A. & de la Torre, M. C. 1,2,3-Triazolium-derived mesoionic carbene ligands bearing chiral sulfur-based moieties: synthesis, catalytic properties, and their role in chirality transfer. ACS Omega 4, 12983–12994 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Z. & Schreiner, P. R. (Thio)urea organocatalysis—What can be learnt from anion recognition?. Chem. Soc. Rev. 38, 1187–1198 (2009).Article 
CAS 
PubMed 

Google Scholar 
Amendola, V., Fabbrizzi, L. & Mosca, L. Anion recognition by hydrogen bonding: urea-based receptors. Chem. Soc. Rev. 39, 3889–3915 (2010).Article 
CAS 
PubMed 

Google Scholar 
Shimizu, L. S., Salpage, S. R. & Korous, A. A. Functional materials from self-assembled bis-urea macrocycles. Acc. Chem. Res. 47, 2116–2127 (2014).Article 
CAS 
PubMed 

Google Scholar 
Jia, C., Zuo, W., Zhang, D., Yang, X.-J. & Wu, B. Anion recognition by oligo-(thio)urea-based receptors. Chem. Commun. 52, 9614–9627 (2016).Article 
CAS 

Google Scholar 
Kundu, S., Egboluche, T. K. & Hossain, M. A. Urea- and thiourea-based receptors for anion binding. Acc. Chem. Res. 56, 1320–1329 (2023).Article 
CAS 
PubMed 

Google Scholar 
Connon, S. J. Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts. Chem. Commun. 22, 2499-2510 (2008).Volz, N. & Clayden, J. The urea renaissance. Angew. Chem. Int. Ed. 50, 12148–12155 (2011).Article 
CAS 

Google Scholar 
Li, P., Hu, X., Dong, X.-Q. & Zhang, X. Recent advances in dynamic kinetic resolution by chiral bifunctional (thio)urea- and squaramide-based organocatalysts. Molecules 21, 1327–1340 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Gimeno, M. C. & Herrera, R. P. Hydrogen bonding and internal or external lewis or brønsted acid assisted (thio)urea catalysts. Eur. J. Org. Chem. 2020, 1057–1068 (2020).Article 
CAS 

Google Scholar 
Waser, M., Winter, M. & Mairhofer, C. (Thio)urea containing chiral ammonium salt catalysts. Chem. Rec. 23, e202200198 (2022).Article 
PubMed 

Google Scholar 
Vera, S., García-Urricelqui, A., Mielgo, A. & Oiarbide, M. Progress in (thio)urea- and squaramide-based brønsted base catalysts with multiple H-bond donors. Eur. J. Org. Chem. 26, e202201254 (2023).Article 
CAS 

Google Scholar 
Hernández-Rodríguez, M. et al. Synthesis of novel chiral (thio)ureas and their application as organocatalysts and ligands in asymmetric synthesis. Aust. J. Chem. 61, 364–375 (2008).Article 

Google Scholar 
Hong, S. & Marks, T. J. Organolanthanide-catalyzed hydroamination. Acc. Chem. Res. 37, 673–686 (2004).Article 
CAS 
PubMed 

Google Scholar 
Hultzsch, K. C. Transition metal-catalyzed asymmetric hydroamination of alkenes (AHA). Adv. Synth. Catal. 347, 367–391 (2005).Article 
CAS 

Google Scholar 
Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).Article 
PubMed 

Google Scholar 
Hesp, K. D. & Stradiotto, M. Rhodium- and iridium-catalyzed hydroamination of alkenes. ChemCatChem 2, 1192–1207 (2010).Article 
CAS 

Google Scholar 
Reznichenko, A. L., Nawara-Hultzsch, A. J. & Hultzsch, K. C. in Stereoselective Formation of Amines (eds Wei Li & Xumu Zhang) 191-260 (Springer Berlin Heidelberg, 2014).Huang, L., Arndt, M., Gooßen, K., Heydt, H. & Gooßen, L. J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 115, 2596–2697 (2015).Article 
CAS 
PubMed 

Google Scholar 
Bernoud, E., Lepori, C., Mellah, M., Schulz, E. & Hannedouche, J. Recent advances in metal free- and late transition metal-catalysed hydroamination of unactivated alkenes. Catal. Sci. Technol. 5, 2017–2037 (2015).Article 
CAS 

Google Scholar 
Michon, C., Abadie, M.-A., Medina, F. & Agbossou-Niedercorn, F. Recent metal-catalysed asymmetric hydroaminations of alkenes. J. Organomet. Chem. 847, 13–27 (2017).Article 
CAS 

Google Scholar 
Hannedouche, J. & Schulz, E. Hydroamination and hydroaminoalkylation of alkenes by group 3–5 elements: recent developments and comparison with late transition metals. Organometallics 37, 4313–4326 (2018).Article 
CAS 

Google Scholar 
Beccalli, E. M., Broggini, G., Christodoulou, M. S. & Giofrè, S. Adv. Organomet. Chem. Vol. 69 (ed Pedro J. Pérez) 1–71 (Academic Press, 2018).Colonna, P., Bezzenine, S., Gil, R. & Hannedouche, J. Alkene hydroamination via earth-abundant transition metal (iron, cobalt, copper and zinc) catalysis: a mechanistic overview. Adv. Synth. Catal. 362, 1550–1563 (2020).Article 
CAS 

Google Scholar 
Shen, X. et al. Ligand-promoted cobalt-catalyzed radical hydroamination of alkenes. Nat. Commun. 11, 783 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Streiff, S. & Jérôme, F. Hydroamination of non-activated alkenes with ammonia: a holy grail in catalysis. Chem. Soc. Rev. 50, 1512–1521 (2021).Article 
CAS 
PubMed 

Google Scholar 
Rocard, L. et al. Earth-abundant 3d transition metal catalysts for hydroalkoxylation and hydroamination of unactivated alkenes. Catalysts 11, 674 (2021).Article 
CAS 

Google Scholar 
Hirano, K. & Miura, M. Hydroamination, aminoboration, and carboamination with electrophilic amination reagents: umpolung-enabled regio- and stereoselective synthesis of N-containing molecules from alkenes and alkynes. J. Am. Chem. Soc. 144, 648–661 (2022).Article 
CAS 
PubMed 

Google Scholar 
Miao, H., Guan, M., Xiong, T., Zhang, G. & Zhang, Q. Cobalt-catalyzed enantioselective hydroamination of arylalkenes with secondary amines. Angew. Chem. Int. Ed. 62, e202213913 (2023).Article 
CAS 

Google Scholar 
Qi, M., Tao, Q., Huanran, M., Ge, Z. & Qian, Z. Cobalt(III) hydride HAT mediated enantioselective intramolecular hydroamination access to chiral pyrrolidines. Sci. China Chem. 67, 2002–2008 (2024).Article 

Google Scholar 
Gagne, M. R. et al. Stereoselection effects in the catalytic hydroamination/cyclization of amino olefins at chiral organolanthanide centers. Organometallics 11, 2003–2005 (1992).Article 
CAS 

Google Scholar 
Giardello, M. A., Conticello, V. P., Brard, L., Gagne, M. R. & Marks, T. J. Chiral organolanthanides designed for asymmetric catalysis. a kinetic and mechanistic study of enantioselective olefin hydroamination/cyclization and hydrogenation by C1-symmetric Me2Si(Me4C5)(C5H3R*)Ln complexes where R* = chiral auxiliary. J. Am. Chem. Soc 116, 10241–10254 (1994).Article 
CAS 

Google Scholar 
Hong, S., Tian, S., Metz, M. V. & Marks, T. J. C2-symmetric bis(oxazolinato)lanthanide catalysts for enantioselective intramolecular hydroamination/cyclization. J. Am. Chem. Soc. 125, 14768–14783 (2003).Article 
CAS 
PubMed 

Google Scholar 
Wood, M. C., Leitch, D. C., Yeung, C. S., Kozak, J. A. & Schafer, L. L. Chiral neutral zirconium amidate complexes for the asymmetric hydroamination of alkenes. Angew. Chem. Int. Ed. 46, 354–358 (2007).Article 
CAS 

Google Scholar 
Manna, K., Xu, S. & Sadow, A. D. A highly enantioselective zirconium catalyst for intramolecular alkene hydroamination: significant isotope effects on rate and stereoselectivity. Angew. Chem. Int. Ed. 50, 1865–1868 (2011).Article 
CAS 

Google Scholar 
Manna, K. et al. Highly enantioselective zirconium-catalyzed cyclization of aminoalkenes. J. Am. Chem. Soc. 135, 7235–7250 (2013).Article 
CAS 
PubMed 

Google Scholar 
Manna, K., Eedugurala, N. & Sadow, A. D. Zirconium-catalyzed desymmetrization of aminodialkenes and aminodialkynes through enantioselective hydroamination. J. Am. Chem. Soc. 137, 425–435 (2015).Article 
CAS 
PubMed 

Google Scholar 
Shen, X. & Buchwald, S. L. Rhodium-catalyzed asymmetric intramolecular hydroamination of unactivated alkenes. Angew. Chem. Int. Ed. 49, 564–567 (2010).Article 
CAS 

Google Scholar 
Foster, D. et al. Design, scope and mechanism of highly active and selective chiral NHC–iridium catalysts for the intramolecular hydroamination of a variety of unactivated aminoalkenes. Chem. Sci. 12, 3751–3767 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, H., Shang, H. & Cui, B. (Salen)Mn(III)-catalyzed enantioselective intramolecular haloamination of alkenes through chiral aziridinium ion ring-opening sequence. ACS Catal. 12, 7046–7053 (2022).Article 
CAS 

Google Scholar 
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article 
PubMed 

Google Scholar 
Lu, T. & Chen, F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 38, 314–323 (2012).Article 
PubMed 

Google Scholar 
Manna, K., Eedugurala, N. & Sadow, A. D. Zirconium-catalyzed desymmetrization of aminodialkenes and aminodialkynes through enantioselective hydroamination. J. Am. Chem. Soc 137, 425–435 (2015).Article 
CAS 
PubMed 

Google Scholar 
Hudkins, R. L. et al. Discovery and characterization of 6-{4-[3-(R)-2-methylpyrrolidin-1-yl)propoxy]phenyl}-2H-pyridazin-3-one (CEP-26401, Irdabisant): A potent, selective histamine H3 receptor inverse agonist.J. Med. Chem. 54, 4781–4792 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wolfram, K. M., C., Holthausen. in A Chemist’s Guide to Density Functional Theory. 65–91 (2001).Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grimme, S. Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 47, 3430–3434 (2008).Article 
CAS 

Google Scholar 
Parr, R. G. Density Functional Theory Of Atoms And Molecules (Springer Netherlands, 1980).Frisch, M. J. et al. Gaussian 16, revision B.01 (Gaussian, Inc., Wallingford, CT, 2016). https://gaussian.com/.Lee, C., Yang, W. & Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).Article 
ADS 
CAS 

Google Scholar 
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).Article 
ADS 
CAS 

Google Scholar 
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).Article 
ADS 
CAS 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).Article 
ADS 
PubMed 

Google Scholar 
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).Article 
CAS 
PubMed 

Google Scholar 
Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta. 28, 213–222 (1973).Article 
CAS 

Google Scholar 
Ditchfield, R., Hehre, W. J. & Pople, J. A. Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).Article 
ADS 
CAS 

Google Scholar 
Chai, J.-D. & Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128, 084106 (2008).Article 
ADS 
PubMed 

Google Scholar 
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).Article 
CAS 
PubMed 

Google Scholar 
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).Article 
CAS 
PubMed 

Google Scholar 
Merrick, J. P., Moran, D. & Radom, L. An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 111, 11683–11700 (2007).Article 
CAS 
PubMed 

Google Scholar 
Lu, T. & Chen, Q. Shermo: a general code for calculating molecular thermochemistry properties. Comput. Theor. Chem. 1200, 113249–113256 (2021).Article 
CAS 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics. 14, 33–38 (1996).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles