Clostridium septicum manifests a bile salt germinant response mediated by Clostridioides difficile csp gene orthologs

Kornbluth, A. A., Danzig, J. B. & Bernstein, L. H. Clostridium septicum infection and associated malignancy. Report of 2 cases and review of the literature. Medicine 68, 30–37 (1989).Article 
PubMed 

Google Scholar 
Hermsen, J. L., Schurr, M. J., Kudsk, K. A. & Faucher, L. D. Phenotyping Clostridium septicum infection: a surgeon’s infectious disease. J. Surg. Res. 148, 67–76 (2008).Article 
PubMed 

Google Scholar 
Srivastava, I., Aldape, M. J., Bryant, A. E., Stevens, D. L. & Spontaneous, C. septicum gas gangrene: A literature review. Anaerobe 48, 165–171 (2017).Article 
PubMed 

Google Scholar 
Kennedy, C. L. et al. Pore-Forming Activity of Alpha-Toxin Is Essential for Clostridium septicum-Mediated Myonecrosis. Infect. Immun. 77, 943–951 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Jing, W. et al. Clostridium septicum α-toxin activates the NLRP3 inflammasome by engaging GPI-anchored proteins. Sci. Immunol. 7, eabm1803 (2022).Article 
PubMed 

Google Scholar 
Larson, C. M., Bubrick, M. P., Jacobs, D. M. & West, M. A. Malignancy, mortality, and medicosurgical management of Clostridium septicum infection. Surgery 118, 592–597 (1995). discussion 597–8.Article 
PubMed 

Google Scholar 
Prescott, J. F., MacInnes, J.I. & Wu, A. K. K. Taxonomic relationships among the Clostridia. in Clostridial Diseases of Animals 1–5 (John Wiley & Sons, Inc, Hoboken, NJ, 2016).Lawson, P. A., Citron, D. M., Tyrrell, K. L. & Finegold, S. M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 40, 95–99 (2016).Article 
PubMed 

Google Scholar 
Bhattacharjee, D., McAllister, K. N. & Sorg, J. A. Germinants and Their Receptors in Clostridia. J. Bacteriol. 198, 2767–2775 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Shen, A., Edwards, A. N., Sarker, M. R. & Paredes-Sabja, D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 7, 1–30 (2019).Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Paredes-Sabja, D., Torres, J. A., Setlow, P. & Sarker, M. R. Clostridium perfringens spore germination: characterization of germinants and their receptors. J. Bacteriol. 190, 1190–1201 (2008).Article 
PubMed 

Google Scholar 
Brunt, J. et al. Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems. PLoS Pathog. 10, e1004382 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Waites, W. M. & Wyatt, L. R. The effect of pH, germinants and temperature on the germination of spores of Clostridium bifermentans. J. Gen. Microbiol. 80, 253–258 (1974).Article 
PubMed 

Google Scholar 
Gibbs, P. A. The activation of spores of Clostridium bifermentans. J. Gen. Microbiol. 46, 285–291 (1967).Article 
PubMed 

Google Scholar 
Waites, W. M. & Wyatt, L. R. Germination of spores of Clostridium bifermentans by certain amino acids, lactate and pyruvate in the presence of sodium or potassium ions. J. Gen. Microbiol. 67, 215–222 (1971).Article 
PubMed 

Google Scholar 
Kochan, T. J. et al. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores. PLoS Pathog. 13, 1–21 (2017).Paredes-Sabja, D., Udompijitkul, P. & Sarker, M. R. Inorganic phosphate and sodium ions are cogerminants for spores of Clostridium perfringens type A food poisoning-related isolates. Appl. Environ. Microbiol. 75, 6299–6305 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Alberto, F., Broussolle, V., Mason, D. R., Carlin, F. & Peck, M. W. Variability in spore germination response by strains of proteolytic Clostridium botulinum types A, B and F. Lett. Appl. Microbiol. 36, 41–45 (2003).Article 
PubMed 

Google Scholar 
Plowman, J. & Peck, M. W. Use of a novel method to characterize the response of spores of non-proteolytic Clostridium botulinum types B, E and F to a wide range of germinants and conditions. J. Appl. Microbiol. 92, 681–694 (2002).Article 
PubMed 

Google Scholar 
Setlow, P., Wang, S. & Li, Y.-Q. Germination of Spores of the Orders Bacillales and Clostridiales. Annu. Rev. Microbiol. 71, 459–477 (2017).Article 
PubMed 

Google Scholar 
Shen, A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu. Rev. Microbiol. 74, 545–566 (2020).Article 
PubMed 

Google Scholar 
Talukdar, P. K. & Sarker, M. R. The serine proteases CspA and CspC are essential for germination of spores of Clostridium perfringens SM101 through activating SleC and cortex hydrolysis. Food Microbiol. 86, 103325 (2020).Article 
PubMed 

Google Scholar 
Paredes-Sabja, D., Setlow, P. & Sarker, M. R. The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates. Microbiology 155, 3464–3472 (2009).Article 
PubMed 

Google Scholar 
Shimamoto, S., Moriyama, R., Sugimoto, K., Miyata, S. & Makino, S. Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity. J. Bacteriol. 183, 3742–3751 (2001).Article 
PubMed 
PubMed Central 

Google Scholar 
Paredes-Sabja, D., Setlow, P. & Sarker, M. R. SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens. J. Bacteriol. 191, 2711–2720 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332–338 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Tian, Y. et al. The microbiome modulating activity of bile acids. Gut Microbes 11, 979–996 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Larabi, A. B., Masson, H. L. P. & Bäumler, A. J. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 15, 2172671 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Francis, M. B., Allen, C. A., Shrestha, R. & Sorg, J. A. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog. 9, e1003356 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Rohlfing, A. E. et al. The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genet 15, e1008224 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Shrestha, R., Cochran, A. M. & Sorg, J. A. The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA. PLoS Pathog. 15, e1007681 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Adams, C. M., Eckenroth, B. E., Putnam, E. E., Doublié, S. & Shen, A. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog. 9, e1003165 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Lawler, A. J., Lambert, P. A. & Worthington, T. A Revised Understanding of Clostridioides difficile Spore Germination. Trends Microbiol 28, 744–752 (2020).Article 
PubMed 

Google Scholar 
Setlow, P. Spore germination. Curr. Opin. Microbiol. 6, 550–556 (2003).Article 
PubMed 

Google Scholar 
Zhu, Y. et al. Rapid determination of spore germinability of Clostridium perfringens based on microscopic hyperspectral imaging technology and chemometrics. J. Food Eng. 280, 109896 (2020).Article 

Google Scholar 
Hofmann, A. F. & Mysels, K. J. Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca2+ ions. J. Lipid Res. 33, 617–626 (1992).Article 
PubMed 

Google Scholar 
Northfield, T. C. & McColl, I. Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut 14, 513–518 (1973).Article 
PubMed 
PubMed Central 

Google Scholar 
Thomas, P. et al. First Comparative Analysis of Clostridium septicum Genomes Provides Insights Into the Taxonomy, Species Genetic Diversity, and Virulence Related to Gas Gangrene. Front. Microbiol. 12, 771945 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Taboada, B., Estrada, K., Ciria, R. & Merino, E. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34, 4118–4120 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Kuehne, S. A., Heap, J. T., Cooksley, C. M., Cartman, S. T. & Minton, N. P. ClosTron-mediated engineering of Clostridium. Methods Mol. Biol. 765, 389–407 (2011).Article 
PubMed 

Google Scholar 
Shrestha, R., Lockless, S. W. & Sorg, J. A. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. J. Biol. Chem. 292, 10735–10742 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Ragkousi, K., Eichenberger, P., van Ooij, C. & Setlow, P. Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. J. Bacteriol. 185, 2315–2329 (2003).Article 
PubMed 
PubMed Central 

Google Scholar 
Tehri, N., Kumar, N., Raghu, H. V. & Vashishth, A. Biomarkers of bacterial spore germination. Ann. Microbiol. 68, 513–523 (2018).Article 

Google Scholar 
Kevorkian, Y., Shirley, D. J. & Shen, A. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie 122, 243–254 (2016).Article 
PubMed 

Google Scholar 
Burns, D. A., Heap, J. T. & Minton, N. P. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J. Bacteriol. 192, 657–664 (2010).Article 
PubMed 

Google Scholar 
Gutelius, D., Hokeness, K., Logan, S. M. & Reid, C. W. Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination. Microbiology 160, 209–216 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Bhattacharjee, D. & Sorg, J. A. Conservation of the ‘Outside-in’ Germination Pathway in Paraclostridium bifermentans. Front. Microbiol. 9, 2487 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Liggins, M., Ramirez, N., Magnuson, N. & Abel-Santos, E. Progesterone analogs influence germination of Clostridium sordellii and Clostridium difficile spores in vitro. J. Bacteriol. 193, 2776–2783 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Liggins, M., Ramírez Ramírez, N. & Abel-Santos, E. Comparison of sporulation and germination conditions for Clostridium perfringens type A and G strains. Front. Microbiol. 14, 1143399 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Donnelly, M. L., Forster, E. R., Rohlfing, A. E. & Shen, A. Differential effects of ‘resurrecting’ Csp pseudoproteases during Clostridioides difficile spore germination. Biochem. J. 477, 1459–1478 (2020).Article 
PubMed 

Google Scholar 
Ramirez, N. & Abel-Santos, E. Requirements for germination of Clostridium sordellii spores in vitro. J. Bacteriol. 192, 418–425 (2010).Article 
PubMed 

Google Scholar 
Sundaresan, A. et al. A design of experiments screen reveals that Clostridium novyi-NT spore germinant sensing is stereoflexible for valine and its analogs. Commun. Biol. 6, 118 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Finegold, S. M., Attebery, H. R. & Sutter, V. L. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr. 27, 1456–1469 (1974).Article 
PubMed 

Google Scholar 
Marchesi, J. R. et al. Towards the human colorectal cancer microbiome. PLoS One 6, e20447 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Kopliku, F. A. et al. Low prevalence of Clostridium septicum fecal carriage in an adult population. Anaerobe 32, 34–36 (2015).Article 
PubMed 

Google Scholar 
Ely, J., Ruder, C. A. & Vogt, J. C. A survey of the microbes in human bile. Trans. Kans. Acad. Sci. 88, 20–28 (1985).Article 
PubMed 

Google Scholar 
Mallozzi, M. J. G. & Clark, A. E. Trusting Your Gut: Diagnosis and Management of Clostridium septicum Infections. Clin. Microbiol. Newsl. 38, 187–191 (2016).Article 

Google Scholar 
Hibberd, P. L. Immunizations in adults with cancer. in UpToDate (eds. Boeckh, M. & Bogorodskaya, M.) (UpToDate, Waltham, MA, 2021).Ocvirk, S. & O’Keefe, S. J. Influence of Bile Acids on Colorectal Cancer Risk: Potential Mechanisms Mediated by Diet – Gut Microbiota Interactions. Curr. Nutr. Rep. 6, 315–322 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, Y.-C., Chiu, C.-F., Hsueh, C.-T. & Hsueh, C.-T. The role of bile acids in cellular invasiveness of gastric cancer. Cancer Cell Int 18, 75 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Wu, M. et al. Diagnosis of hepatocellular carcinoma using a novel anti-glycocholic acid monoclonal antibody-based method. Oncol. Lett. 17, 3103–3112 (2019).PubMed 
PubMed Central 

Google Scholar 
Phelan, J. P., Reen, F. J., Caparros-Martin, J. A., O’Connor, R. & O’Gara, F. Rethinking the bile acid/gut microbiome axis in cancer. Oncotarget 8, 115736–115747 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).Article 
PubMed 

Google Scholar 
Di Ciaula, A. et al. Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Ann. Hepatol. 16, S87–S105 (2017).Article 
PubMed 

Google Scholar 
Zhang, A. et al. Urinary metabolic profiling identifies a key role for glycocholic acid in human liver cancer by ultra-performance liquid-chromatography coupled with high-definition mass spectrometry. Clin. Chim. Acta 418, 86–90 (2013).Article 
PubMed 

Google Scholar 
Perutka, J., Wang, W., Goerlitz, D. & Lambowitz, A. M. Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J. Mol. Biol. 336, 421–439 (2004).Article 
PubMed 

Google Scholar 
Heap, J. T., Pennington, O. J., Cartman, S. T. & Minton, N. P. A modular system for Clostridium shuttle plasmids. J. Microbiol. Methods 78, 79–85 (2009).Article 
PubMed 

Google Scholar 
Pospiech, A. & Neumann, B. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11, 217–218 (1995).Article 
PubMed 

Google Scholar 
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).Article 
PubMed 

Google Scholar 
Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44, 6614–6624 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44, W16–W21 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Xie, Z. & Tang, H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 33, 3340–3347 (2017).Article 
PubMed 

Google Scholar 
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W. & Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acad. Sci. Usa. 98, 15155–15160 (2001).Article 
PubMed 
PubMed Central 

Google Scholar 
Best, R. B. et al. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).Article 
PubMed 
PubMed Central 

Google Scholar 
Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles