Novel multifibrillar carbon and oxidation-stable carbon/ceramic hybrid fibers consisting of thousands of individual nanofibers with high tensile strength

Frank, E., Steudle, L. M., Ingildeev, D., Spörl, J. M. & Buchmeiser, M. R. Carbon fibers: Precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 53, 5262 (2014).Article 
CAS 

Google Scholar 
Chand, S. Carbon fibers for composites. J. Mater. Sci. 35(6), 1303 (2000).Article 
ADS 
CAS 

Google Scholar 
Morgan, P. Carbon Fibers and Their Composites (CRC Press, Boca Raton, 2005).Book 

Google Scholar 
Liao, X. et al. Polyacrylonitrile-derived polyconjugated ladder structures for high performance all-organic dielectric materials. Chem. Commun. 51, 10127 (2015).Article 
CAS 

Google Scholar 
Sánchez-Soto, P. J. et al. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis. J. Anal. Appl. Pyrolysis 58, 155 (2001).Article 

Google Scholar 
Frank, E., Hermanutz, F. & Buchmeiser, M. R. Carbon fibers: Precursors, manufacturing, and properties. Macromol. Mater. Eng. 297, 493 (2012).Article 
CAS 

Google Scholar 
Frank, E., Steudle, L. M., Ingildeev, D., Spörl, J. M. & Buchmeiser, M. R. Carbon fibers: Precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed 53, 5262 (2014).Article 
CAS 

Google Scholar 
Rahaman, M. S. A., Ismail, A. F. & Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 92, 1421 (2007).Article 
CAS 

Google Scholar 
TORAYCA® Carbon Fiber | Toray Composite Materials America. 2023. https://www.toraycma.com/products/carbon-fiber/. Accessed 30 Mar 2023Fitzer, E. Carbon Fibers and Their Composites (Springer, Berlin, 1985).Book 

Google Scholar 
Donnet, J. B. & Chaned Bansal, R. Carbon Fibers 3rd edn. (CRC Press, Boca Raton, 1998).Book 

Google Scholar 
Demczyk, B. G. et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 334, 173 (2002).Article 

Google Scholar 
Bai, Y. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 13, 589 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Jang, D., Lee, M. E., Choi, J., Cho, S. Y. & Lee, S. Strategies for the production of PAN-based carbon fibers with high tensile strength. Carbon 186, 644 (2022).Article 
CAS 

Google Scholar 
Danzer, R. Some notes on the correlation between fracture and defect statistics: Are Weibull statistics valid for very small specimens?. J. Eur. Ceram Soc. 26, 3043 (2006).Article 
CAS 

Google Scholar 
Griffith, A. A. VI. The phenomena of rupture and flow in solids. Philos. Trans. R Soc. Lond. 221, 163 (1921).Article 
ADS 

Google Scholar 
Flores, O. et al. Processing and characterization of large diameter ceramic sicn monofilaments from commercial oligosilazanes. RSC Adv. 5, 107001 (2015).Article 
ADS 
CAS 

Google Scholar 
Wendorff, J. H., Agarwal, S. & Greiner, A. Electrospinning Materials, Processing and Applications (Wiley, Weinheim, 2008).
Google Scholar 
Shin, E. H., Cho, K. S., Seo, M. H. & Kim, H. Determination of electrospun fiber diameter distributions using image analysis processing. Macromol. Res. 16, 314 (2008).Article 
CAS 

Google Scholar 
Wang, T. & Kumar, S. Electrospinning of polyacrylonitrile nanofibers. J .Appl. Polym. Sci. 102, 1023 (2006).Article 
CAS 

Google Scholar 
Nataraj, S. K., Yang, K. S. & Aminabhavi, T. M. Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog. Polym. Sci. 37, 487 (2012).Article 
CAS 

Google Scholar 
Inagaki, M., Yang, Y. & Kang, F. Carbon nanofibers prepared via electrospinning. Adv. Mat. 24, 2547 (2012).Article 
CAS 

Google Scholar 
Ramlow, H., Marangoni, C., Motz, G. & Machado, R. A. F. Statistical optimization of polysilazane-derived ceramic: Electrospinning with and without organic polymer as a spinning aid for manufacturing thinner fibers. Chem. Eng. J. Adv. 9, 100220 (2022).Article 
CAS 

Google Scholar 
Ribeiro, L. F. B. et al. Flexible and porous nonwoven SiCN ceramic material via electrospinning of an optimized silazane solution. Adv. Eng. Mater. 24, 2100321 (2022).Article 
CAS 

Google Scholar 
Ren, Z., Gervais, C. & Singh, G. Fabrication and characterization of silicon oxycarbide fibre-mats: Via electrospinning for high temperature applications. RSC Adv. 10, 38446 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liao X, Denk J, Tran, T, Miyajima N, Benker L, Rosenfeldt S, Schafföner S, Retsch M, Greiner A, Motz G, Agarwal S. Extremely low thermal conductivity and high electrical conductivity of sustainable carbon ceramic electrospun nonwoven materials. Sci. Adv. 9 (2023).Zhou, Z. et al. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer (Guildf) 50, 2999 (2009).Article 
CAS 

Google Scholar 
Moon, S. C. & Farris, R. J. Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns. Carbon N Y 47, 2829 (2009).Article 
CAS 

Google Scholar 
Xie, Z., Niu, H. & Lin, T. Continuous polyacrylonitrile nanofiber yarns: Preparation and dry-drawing treatment for carbon nanofiber production. RSC Adv. 5, 15147 (2015).Article 
ADS 
CAS 

Google Scholar 
Ali, U., Zhou, Y., Wang, X. & Lin, T. Direct electrospinning of highly twisted, continuous nanofiber yarns. J. Text. Inst. 103, 80 (2012).Article 
CAS 

Google Scholar 
Pan, H., Li, L., Hu, L. & Cui, X. Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer (Guildf) 47, 4901 (2006).Article 
CAS 

Google Scholar 
O’Connor, R. A. & McGuinness, G. B. Electrospun nanofibre bundles and yarns for tissue engineering applications: A review. Proc. Inst. Mech. Eng. H 230, 987 (2016).Article 
PubMed 

Google Scholar 
Liao, X. et al. High strength in combination with high toughness in robust and sustainable polymeric materials. Science 1979 366, 1376 (2019).CAS 

Google Scholar 
Flores, O., Bordia, R. K., Nestler, D., Krenkel, W. & Motz, G. Ceramic Fibers based on SiC and SiCN systems: Current research, development, and commercial status. Adv. Eng. Mater. 16, 621 (2014).Article 
CAS 

Google Scholar 
Ribeiro, L. et al. The influence of pyrolysis temperature on the oxidation resistance of carbon-rich SiCN ceramics derived from reaction of silazanes with acrylonitrile. J. Eur. Ceram. Soc. 41, 3285 (2021).Article 
CAS 

Google Scholar 
Ribeiro, L. F. B. et al. A novel PAN/silazane hybrid polymer for processing of carbon-based fibres with extraordinary oxidation resistance. J. Mater. Chem. A Mater. 5, 720 (2017).Article 
CAS 

Google Scholar 
Dalton, S., Heatley, F. & Budd, P. M. Thermal stabilization of polyacrylonitrile fibres. Polymer (Guildf) 40, 5531 (1999).Article 
CAS 

Google Scholar 
Wen, Q., Yu, Z. & Riedal, R. The fate and role of in situ formed carbon in polymer-derived ceramics. Prog. Mater. Sci. 109, 100623 (2020).Article 
CAS 

Google Scholar 
Meinl, J. et al. Optimization of the temperature program to scale up the stabilization of polyacrylonitrile fibers. Compos. Part A Appl. Sci. Manuf. 96, 37 (2017).Article 
CAS 

Google Scholar 
Flores, O., Schmalz, T., Krenkel, W., Heymann, L. & Motz, G. Selective cross-linking of oligosilazanes to tailored meltable polysilazanes for the processing of ceramic SiCN fibres. J. Mater. Chem. A Mater. 1, 15406 (2013).Article 
CAS 

Google Scholar 
D’Elia, R. et al. Effect of dicumyl peroxide concentration on the polymerization kinetics of a polysilazane system. Polym. Eng. Sci. 58, 859 (2018).Article 

Google Scholar 
Traßl, S., Suttor, D., Motz, G., Rössler, E. & Ziegler, G. Structural characterisation of silicon carbonitride ceramics derived from polymeric precursors. J. Eur. Ceram. Soc. 20, 215 (2000).Article 

Google Scholar 
Ziegler, G. et al. Synthesis, microstructure and properties of SiCN ceramics prepared from tailored polymers. Mater. Chem. Phys. 61, 55 (1999).Article 
CAS 

Google Scholar 
Müller, S., de Hazan, Y. & Penner, D. Effect of temperature, humidity and aminoalkoxysilane additive on the low temperature curing of polyorganosilazane coatings studied by ir spectroscopy, gravimetric and evolved gas analysis. Prog. Org. Coat. 97, 133 (2016).Article 

Google Scholar 
Zhan, Y., Grottenmüller, R., Li, W., Javaid, F. & Riedel, R. Evaluation of mechanical properties and hydrophobicity of room-temperature, moisture-curable polysilazane coatings. J. Appl. Polym. Sci. 138, 50469 (2021).Article 
CAS 

Google Scholar 
Chen, J., Wang, C. G., Dong, X. G. & Liu, H. Z. Study on the coagulation mechanism of wet-spinning PAN fibers. J. Polym. Res. 13, 515 (2006).Article 
CAS 

Google Scholar 
Zhang, S., Liu, H., Yu, J., Li, B. & Ding, B. Multi-functional flexible 2D carbon nanostructured networks. Nat. Commun. 11, 5134 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shiedlin, A., Marom, G. & Zilkha, A. Catalytic initiation of polyacrylonitrile stabilization. Polymer (Guildf) 26, 447 (1985).Article 
CAS 

Google Scholar 
Mittal, J. & Mathur, R. B. Post spinning modification: A review of pan fibres. Science 1997, 35 (1979).
Google Scholar 
Chen, R. et al. Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries. J. Mater. Chem. A Mater. 5, 12914 (2017).Article 
CAS 

Google Scholar 
Ko, T. H. & Huang, L. C. The influence of cobaltous chloride modification on physical properties and microstructure of modified PAN fiber during carbonization. J. Appl. Polym. Sci. 70, 2409 (1998).Article 
CAS 

Google Scholar 
Zhang, W. X. & Wang, Y. Z. Manufacture of carbon fibers from polyacrylonitrile precursors treated with CoSO4. J. Appl. Polym. Sci. 85, 153 (2002).Article 
CAS 

Google Scholar 
Yusof, N. & Ismail, A. F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. J. Anal. Appl. Pyrol. 93, 1 (2012).Article 
CAS 

Google Scholar 
Mathur, R. B., Gupta, D., Bahl, O. P. & Dhami, T. L. Infrared spectral studies of preoxidized PAN fibres incorporated with cuprous chloride additive. J. Fiber. Sci. 20, 227 (1984).Article 
CAS 

Google Scholar 
Li, X. & Dang, X. Effect of potassium permanganate modification on plasticized spinning polyacrylonitrile fibers with different diameters. Polymers (Basel) 10, 1330 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Shin, H. K., Park, M., Kim, H. Y. & Park, S. J. An overview of new oxidation methods for polyacrylonitrile-based carbon fibers. Carbon Lett. 16, 11 (2015).Article 

Google Scholar 
Shin, H. K., Park, M., Kang, P. H., Choi, H. S. & Park, S. J. J. Ind. Eng. Chem. 20, 3789 (2014).Article 
CAS 

Google Scholar 
Park, S. et al. Comprehensive stabilization mechanism of electron-beam irradiated polyacrylonitrile fibers to shorten the conventional thermal treatment. Sci. Rep. 6, 1 (2016).
Google Scholar 
König, S. et al. High-performance carbon fibers prepared by continuous stabilization and carbonization of electron beam-irradiated textile grade polyacrylonitrile fibers. Macromol. Mater. Eng. 306, 2100484 (2021).Article 

Google Scholar 
Kokott, S. & Motz, G. Cross-Linking via electron beam treatment of a tailored polysilazane (ABSE) for processing of ceramic SiCN-Fibers. Soft. Mater. 4, 165 (2007).Article 

Google Scholar 
Bunsell, A. R. & Piant, A. A review of the development of three generations of small diameter silicon carbide fibres. J. Mater. Sci. 41, 823 (2006).Article 
ADS 
CAS 

Google Scholar 
Ichikawa, H. Development of high performance SiC fibers derived from polycarbosilane using electron beam irradiation curing-a review. J. Ceram. Soc. Jpn. 114, 455 (2006).Article 
CAS 

Google Scholar 
Ishikawa, T. Advances in inorganic fibers. Adv. Polym. Sci. 178, 109 (2005).Article 
CAS 

Google Scholar 
Schawaller, D., Clauß, B. & Buchmeiser, M. R. Ceramic filament fibers: A review. Macromol. Mater. Eng. 297, 502 (2012).Article 
CAS 

Google Scholar 
Dawes, K., Glover, L. C. & Vroom, D. A. Physical Properties of Polymers Handbook (Springer, Berlin, 2007).
Google Scholar 
Sezen, M. et al. An Investigation on focused electron/ion beam induced degradation mechanisms of conjugated polymers. Phys. Chem. Chem. Phys. 13, 20235 (2011).Article 
CAS 
PubMed 

Google Scholar 
Drobny, J. G. Radiation Technology for Polymers (CRC Press, Boca Raton, 2020).Book 

Google Scholar 
Callaway, E. B. & Zok, F. W. Strengths of ceramic fiber bundles: Theory and practice. J. Am. Ceram. Soc. 100, 5306 (2017).Article 
CAS 

Google Scholar 
Calard, V. & Lamon, J. Failure of fiber bundles. Compos. Sci. Technol. 64, 701 (2004).Article 
CAS 

Google Scholar 
Hill, R. & Okoroafor, E. U. Weibull statistics of fibre bundle failure using mechanical and acoustic emission testing: The Influence of interfibre friction. Composites 26, 699 (1995).Article 
CAS 

Google Scholar 
Chi, Z., Chou, T. W. & Shen, G. Determination of single fibre strength distribution from fibre bundle testings. J. Mater. Sci. 19, 3319 (1984).Article 
ADS 

Google Scholar 
Nicalon SiC Fiber – COI Ceramics. 2023. https://www.coiceramics.com/technology/fiber/nicalon.html. Accessed 30 Mar 2023.

Hot Topics

Related Articles