Antifungal properties and molecular docking of ZnO NPs mediated using medicinal plant extracts

FAO. State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction. FAO http://www.fao.org/3/ca6030en/ca6030en.pdf%0A (2019).FAO, IFAD, UNICEF, WEP & WHO. The State of Food Security and Nutrition in the World 2023. Urbanization, Agrifood Systems Transformation and Healthy Diets across the Rural–Urban Continuum. The State of Food Security and Nutrition in the World 2023 (2023).Townsend, R. et al. Future of Food. Harnessing Digital Technologies to Improve Food Systems Outcome (World Bank Group, 2019).
Google Scholar 
Sharma, R. R., Singh, D. & Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 50, 205–221 (2009).Article 

Google Scholar 
Beye, A. & Komarek, A. M. Quantification and benefits of reducing post-harvest losses: Evidence for vegetables in Senegal. SSRN Electron. J. https://doi.org/10.2139/ssrn.3707773 (2020).Article 

Google Scholar 
Kaminski, J. & Christiaensen, L. Post-harvest loss in sub-Saharan Africa—what do farmers say?. Glob. Food Secur. 3, 149–158 (2014).Article 

Google Scholar 
FAO. FAO Partnerships Working for the Sustainable Development Goals. (2019).The World Bank. MISSING FOOD: The Case of Postharvest Grain Losses in Sub-Saharan Africa. The World Bank (2011).Fenta, L. & Mekonnen, H. Microbial biofungicides as a substitute for chemical fungicides in the control of phytopathogens: Current perspectives and research directions. Scientifica (Cairo) 2024, 1–12 (2024).Article 

Google Scholar 
Agriopoulou, S., Stamatelopoulou, E. & Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 9, 137 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Williamson, B., Tudzynski, B., Tudzynski, P. & van Kan, J. A. L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 8, 561–580 (2007).Article 
CAS 
PubMed 

Google Scholar 
Dean, R. et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Luciano-Rosario, D., Keller, N. P. & Jurick, W. M. Penicillium expansum: Biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. Mol. Plant Pathol. 21, 1391–1404 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Spadaro, D. & Gullino, M. L. State of the art and future prospects of the biological control of postharvest fruit diseases. Int. J. Food Microbiol. 91, 185–194 (2004).Article 
PubMed 

Google Scholar 
Mincuzzi, A. et al. Postharvest diseases of pomegranate: Alternative control means and a spiderweb effect. J. Fungi 9, 808 (2023).Article 
CAS 

Google Scholar 
Yadav, A. N. et al. Microbial Biotechnology for Sustainable Agriculture: Current Research and Future Challenges. New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives (Elsevier Inc., 2020). https://doi.org/10.1016/B978-0-12-820526-6.00020-8.Kumar, R., Umar, A., Kumar, G. & Nalwa, H. S. Antimicrobial properties of ZnO nanomaterials: A review. Ceram. Int. 43, 3940–3961 (2017).Article 
CAS 

Google Scholar 
Saqib, S. et al. Postharvest disease inhibition in fruit by synthesis and characterization of chitosan iron oxide nanoparticles. Biocatal. Agric. Biotechnol. 28, 101729 (2020).Article 

Google Scholar 
Saqib, S. et al. Organometallic assembling of chitosan-Iron oxide nanoparticles with their antifungal evaluation against Rhizopus oryzae. Appl. Organomet. Chem. 33, e5190 (2019).Article 
CAS 

Google Scholar 
Saqib, S. et al. Catalytic potential of endophytes facilitates synthesis of biometallic zinc oxide nanoparticles for agricultural application. BioMetals 35, 967–985 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kalra, K., Chhabra, V. & Prasad, N. Antibacterial activities of zinc oxide nanoparticles: A mini review. J. Phys. Conf. Ser. 2267, 012049 (2022).Article 
CAS 

Google Scholar 
Gudkov, S. V. et al. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 1–12 (2021).Article 

Google Scholar 
Leta, T. B., Adeyemi, J. O. & Fawole, O. A. Valorisation of pomegranate processing waste for the synthesis of ZnO nanoparticles: Antioxidant and antimicrobial properties against food pathogens. Mater. Res. Express 10, 115401 (2023).Article 
ADS 

Google Scholar 
Adeyemi, J. O. & Fawole, O. A. Metal-based nanoparticles in food packaging and coating technologies: A review. Biomolecules 13, 1092 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Adeyemi, J. O., Onwudiwe, D. C. & Oyedeji, A. O. Biogenic synthesis of CuO, ZnO, and CuO–ZnO nanoparticles using leaf extracts of Dovyalis caffra and their biological properties. Molecules 27, 3206 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Adeyemi, J. O., Oriola, A. O., Onwudiwe, D. C. & Oyedeji, A. O. Plant extracts mediated metal-based nanoparticles: Synthesis and biological applications. Biomolecules 12, 627 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vijayaraghavan, K. & Nalini, S. P. K. Biotemplates in the green synthesis of silver nanoparticles. Biotechnol. J. 5, 1098–1110 (2010).Article 
CAS 
PubMed 

Google Scholar 
Shankar, S. S., Rai, A., Ahmad, A. & Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496–502 (2004).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ali, M. et al. Antifungal activity of Zinc nitrate derived nano Zno fungicide synthesized from Trachyspermum ammi to control fruit rot disease of grapefruit. Ecotoxicol. Environ. Saf. 233, 113311 (2022).Article 
CAS 
PubMed 

Google Scholar 
Pillai, A. M. et al. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct. 1211, 128107 (2020).Article 
CAS 

Google Scholar 
Nxumalo, K. A., Aremu, A. O. & Fawole, O. A. Metabolite profiling, antioxidant and antibacterial properties of four medicinal plants from Eswatini and their relevance in food preservation. South Afr. J. Bot. 162, 719–729 (2023).Article 
CAS 

Google Scholar 
Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R. & Varma, A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process 32, 55–61 (2015).Article 
CAS 

Google Scholar 
Adeyemi, J. O. Kei-apple-mediated NiO nanoparticles and biological studies: Anti-inflammatory and cytotoxicity study against HeLa and HEK 293 cell lines. Mater. Res. Express 10, 075401 (2023).Article 
ADS 

Google Scholar 
Mishra, D. et al. Biosynthesis of zinc oxide nanoparticles via leaf extracts of Catharanthus roseus (L.) G. Don and their application in improving seed germination potential and seedling vigor of Eleusine coracana (L.) Gaertn. Adv. Agric. 2023, 1–11 (2023).
Google Scholar 
Campbell, C. K., Johnson, E. M. & Warnock, D. W. Identification of Pathogenic Fungi (Wiley, 2013). https://doi.org/10.1002/9781118520055.Book 

Google Scholar 
López, S. N., Sangorrín, M. P. & Pildain, M. B. Fruit rot of sweet cherries and raspberries caused by Penicillium crustosum and Mucor piriformis in South Patagonia, Argentina. Can. J. Plant Pathol. 38, 511–516 (2016).Article 

Google Scholar 
Adjou, E. S., Kouton, S., Dahouenon-Ahoussi, E., Sohounhloue, D. C. K. & Soumanou, M. M. Antifungal activity of Ocimum canum essential oil against toxinogenic fungi isolated from peanut seeds in post-harvest in Benin. Int. Res. J. Biol. Sci. 1, 20–26 (2012).
Google Scholar 
Euloge, A. S., Sandrine, K., Edwige, D.-A., Dominique, S. C. & Mohamed, S. M. Antifungal activity of Ocimum canum essential oil against toxinogenic fungi isolated from peanut seeds in post-harvest in Benin. Int. Res. J. Biol. Sci. 1, 20–26 (2012).
Google Scholar 
Loo, Y. Y. et al. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol. 9, 1–7 (2018).Article 
ADS 

Google Scholar 
Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lukman, A. I., Gong, B., Marjo, C. E., Roessner, U. & Harris, A. T. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J. Colloid Interface Sci. 353, 433–444 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Khandel, P., Yadaw, R. K., Soni, D. K., Kanwar, L. & Shahi, S. K. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J. Nanostruct. Chem. 8, 217–54 (2018).Article 
CAS 

Google Scholar 
Rad, S. S., Sani, A. M. & Mohseni, S. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. 131, 239–245 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ashwini, J., Aswathy, T. R., Rahul, A. B., Thara, G. M. & Nair, A. S. Synthesis and characterization of zinc oxide nanoparticles using acacia caesia bark extract and its photocatalytic and antimicrobial activities. Catalysts 11, 1507 (2021).Article 
CAS 

Google Scholar 
Gatou, M. A., Lagopati, N., Vagena, I. A., Gazouli, M. & Pavlatou, E. A. ZnO nanoparticles from different precursors and their photocatalytic potential for biomedical use. Nanomaterials 13, 122 (2023).Article 
CAS 

Google Scholar 
Mohamad Sukri, S. N. A. et al. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J. Mol. Struct. 1189, 57–65 (2019).Article 
ADS 
CAS 

Google Scholar 
Naseer, M., Aslam, U., Khalid, B. & Chen, B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. https://doi.org/10.1038/s41598-020-65949-3 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Kaningini, G. A. et al. Green synthesis and characterization of zinc oxide nanoparticles using bush tea (Athrixia phylicoides DC) natural extract: Assessment of the synthesis process. F1000Research 10, 1077 (2021).Article 
CAS 
PubMed 

Google Scholar 
Eissa, D., Hegab, R. H., Abou-Shady, A. & Kotp, Y. H. Green synthesis of ZnO, MgO and SiO2 nanoparticles and its effect on irrigation water, soil properties, and Origanum majorana productivity. Sci. Rep. https://doi.org/10.1038/s41598-022-09423-2 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Abdelbaky, A. S., Mohamed, A. M. H. A., Sharaky, M., Mohamed, N. A. & Diab, Y. M. Green approach for the synthesis of ZnO nanoparticles using Cymbopogon citratus aqueous leaf extract: Characterization and evaluation of their biological activities. Chem. Biol. Technol. Agric. 10, 1–23 (2023).Article 

Google Scholar 
Mittal, A. K., Chisti, Y. & Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013).Article 
CAS 
PubMed 

Google Scholar 
Singh, P., Kim, Y. J., Zhang, D. & Yang, D. C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016).Article 
CAS 
PubMed 

Google Scholar 
Selim, Y. A., Azb, M. A., Ragab, I. & Abd El-Azim, M. H. M. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep. 10, 3445 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jayappa, M. D. et al. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: Characterization and their applications. Appl. Nanosci. (Switzerland) 10, 3057–3074 (2020).Article 
ADS 
CAS 

Google Scholar 
Murali, M. et al. Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L.—An endemic species. Spectrochim. Acta A Mol. Biomol. Spectrosc. 179, 104–109 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Arciniegas-Grijalba, P. A., Patiño-Portela, M. C., Mosquera-Sánchez, L. P., Guerrero-Vargas, J. A. & Rodríguez-Páez, J. E. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. (Switzerland) 7, 225–241 (2017).Article 
ADS 
CAS 

Google Scholar 
Ouzakar, S. et al. Antibacterial and antifungal activity of zinc oxide nanoparticles produced by Phaeodactylum tricornutum culture supernatants and their potential application to extend the shelf life of sweet cherry (Prunus avium L.). Biocatal. Agric. Biotechnol. 49, 102666 (2023).Article 
CAS 

Google Scholar 
He, L., Liu, Y., Mustapha, A. & Lin, M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 166, 207–215 (2011).Article 
CAS 
PubMed 

Google Scholar 
Sofianos, G., Samaras, A. & Karaoglanidis, G. Multiple and multidrug resistance in Botrytis cinerea: Molecular mechanisms of MLR/MDR strains in Greece and effects of co-existence of different resistance mechanisms on fungicide sensitivity. Front. Plant Sci. 14, 1–13 (2023).Article 

Google Scholar 
Gupta, D., Singh, A. & Khan, A. U. Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res. Lett. 12, 9–11 (2017).Article 

Google Scholar 
Clogston, J. D. & Patri, A. K. Zeta potential measurement. Methods Mol. Biol. 697, 63–70 (2011).Article 
CAS 
PubMed 

Google Scholar 
Németh, Z. et al. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics 14, 1798 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Padmavathy, N. & Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 9, 035004 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Sun, Q., Li, J. & Le, T. Zinc oxide nanoparticle as a novel class of antifungal agents: Current advances and future perspectives. J. Agric. Food Chem. 66, 11209–11220 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sharma, D., Rajput, J., Kaith, B. S., Kaur, M. & Sharma, S. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519, 1224–1229 (2010).Article 
ADS 
CAS 

Google Scholar 
Miri, A., Mahdinejad, N., Ebrahimy, O., Khatami, M. & Sarani, M. Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity. Mater. Sci. Eng. C 104, 109981 (2019).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles