Triplet carbenes with transition-metal substituents

Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid, triply bonded species: synthesis of a stable λ3-phosphino carbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).Article 
CAS 

Google Scholar 
Arduengo, A. J. III, Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).Article 
CAS 

Google Scholar 
Buron, C., Gornitzka, H., Romanenko, V. & Bertrand, G. Stable versions of transient push–pull carbenes: extending lifetimes from nanoseconds to weeks. Science 288, 834–836 (2000).Article 
CAS 
PubMed 

Google Scholar 
Bourissou, D., Guerret, D., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).Article 
CAS 
PubMed 

Google Scholar 
Mercs, L. & Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev. 39, 1903–1912 (2010).Article 
CAS 
PubMed 

Google Scholar 
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhukhovitskiy, A. V., MacLeod, M. J. & Johnson, J. A. Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 115, 11503–11532 (2015).Article 
CAS 
PubMed 

Google Scholar 
Melaimi, M., Jazzar, R., Sloeilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): recent developments. Angew. Chem. Int. Ed. 56, 10046–10068 (2017).Article 
CAS 

Google Scholar 
Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).Article 
CAS 
PubMed 

Google Scholar 
Huynh, H. V. Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem. Rev. 118, 9457–9492 (2018).Article 
CAS 
PubMed 

Google Scholar 
Vignolle, J., Cattoën, X. & Bourissou, D. Stable noncyclic carbenes. Chem. Rev. 109, 3333–3384 (2009).Article 
CAS 
PubMed 

Google Scholar 
Hu, C., Wang, X.-F., Li, J., Chang, X.-Y. & Liu, L. L. A stable rhodium-coordinated carbene with a σ0π2 electronic configuration. Science 383, 81–85 (2024).Article 
CAS 
PubMed 

Google Scholar 
Shibutani, Y., Kusumoto, S. & Nozaki, K. Synthesis, characterization, and trapping of a cyclic diborylcarbene, an electrophilic carbene. J. Am. Chem. Soc. 145, 16186–16192 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kato, T., Gornitzka, H., Baceiredo, A., Savin, A. & Bertrand, G. On the electronic structure of (phosphino)(silyl)carbenes: single-crystal X-ray diffraction and ELF analyses. J. Am. Chem. Soc. 122, 998–999 (2000).Article 
CAS 

Google Scholar 
Hirai, K., Itoh, T. & Tomioka, H. Persistent triplet carbenes. Chem. Rev. 109, 3275–3332 (2009).Article 
CAS 
PubMed 

Google Scholar 
Kutin, Y. et al. Characterization of a triplet vinylidene. J. Am. Chem. Soc. 143, 21410–21415 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tomioka, H., Iwamoto, E., Itakura, H. & Hirai, K. Generation and characterization of a fairly stable triplet carbene. Nature 412, 626–628 (2001).Article 
CAS 
PubMed 

Google Scholar 
Trindle, C. DFT studies of biarylcarbenes and the carbene–biradical continuum. J. Org. Chem. 68, 9669–9677 (2003).Article 
CAS 
PubMed 

Google Scholar 
Trindle, C. Post-Hartree–Fock studies on the structure of bis(ortho-substituted phenyl)methylenes. J. Phys. Chem. A 109, 898–904 (2005).Article 
CAS 
PubMed 

Google Scholar 
Nemirowski, A. & Schreiner, P. R. Electronic stabilization of ground state triplet carbenes. J. Org. Chem. 72, 9533–9549 (2007).Article 
CAS 
PubMed 

Google Scholar 
Schreiner, P. R., Reisenauer, H. P., Sattelmeyer, K. W. & Allen, W. D. H–C–SiMe3: direct generation and spectroscopic identification of ethylidine’s cousin. J. Am. Chem. Soc. 127, 12156–12157 (2005).Article 
CAS 
PubMed 

Google Scholar 
McKellar, A. R. W. et al. Far infrared laser magnetic resonance of singlet methylene: singlet–triplet perturbations, singlet–triplet transitions, and singlet–triplet splitting. J. Chem. Phys. 79, 5251–5264 (1983).Article 
CAS 

Google Scholar 
Montgomery, J. M., Alexander, E. & Mazziotti, D. A. Prediction of the existence of LiCH: a carbene-like organometallic molecule. J. Phys. Chem. A 124, 9562–9566 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lv, Z.-J. & Schneider, S. Carbynes reloaded: isolation of singlet metallocarbenes. Chem 8, 2066–2068 (2022).Article 
CAS 

Google Scholar 
Schrock, R. R. High oxidation state multiple metal–carbon bonds. Chem. Rev. 102, 145–180 (2002).Article 
CAS 
PubMed 

Google Scholar 
Cui, M. & Jia, G. Organometallic chemistry of transition metal alkylidyne complexes centered at metathesis reactions. J. Am. Chem. Soc. 144, 12546–12566 (2022).Article 
CAS 
PubMed 

Google Scholar 
Rommens, K. T. & Saeys, M. Molecular views on Fischer–Tropsch synthesis. Chem. Rev. 123, 5798–5858 (2023).Article 
CAS 
PubMed 

Google Scholar 
Frenking, G. & Fröhlich, N. The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717–774 (2000).Article 
CAS 
PubMed 

Google Scholar 
Da Re, R. E. & Hopkins, M. D. Electronic spectroscopy and photophysics of metal–alkylidyne complexes. Coord. Chem. Rev. 249, 1396–1409 (2005).Article 

Google Scholar 
Morales-Verdejo, C. A., Newsom, M. I., Cohen, B. W., Vibbert, H. B. & Hopkins, M. D. Dihydrogen activation by a tungsten–alkylidyne complex: toward photoredox chromophores that deliver renewable reducing equivalents. Chem. Commun. 49, 10566–10568 (2013).Article 
CAS 

Google Scholar 
Citek, C., Oyala, P. H. & Peters, J. C. Mononuclear Fe(I) and Fe(II) acetylene adducts and their reductive protonation to terminal Fe(IV) and Fe(V) carbynes. J. Am. Chem. Soc. 141, 15211–15221 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Arnett, C. H. & Agapie, T. Activation of an open shell, carbyne-bridged diiron complex toward binding of dinitrogen. J. Am. Chem. Soc. 142, 10059–10068 (2020).Article 
CAS 
PubMed 

Google Scholar 
Bailey, G. A., Buss, J. A., Oyala, P. H. & Agapie, T. Terminal, open-shell Mo carbide and carbyne complexes: spin delocalization and ligand noninnocence. J. Am. Chem. Soc. 143, 13091–13102 (2021).Article 
CAS 
PubMed 

Google Scholar 
Rao, J. et al. A Triplet iron carbyne complex. J. Am. Chem. Soc. 145, 25766–25775 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kooij, B. et al. Copper complexes with diazoolefin ligands and their photochemical conversion into alkenylidene complexes. Angew. Chem. Int. Ed. 62, e202214899 (2023).Article 
CAS 

Google Scholar 
Hu, C. et al. Crystalline monometal-substituted free carbenes. Chem 8, 2278–2289 (2022).Article 
CAS 

Google Scholar 
Wei, R., Wang, X.-F., Hu, C. & Liu, L. L. Synthesis and reactivity of copper carbyne anion complexes. Nat. Synth. 2, 357–363 (2023).Article 

Google Scholar 
Sun, J. et al. A platinum(II) metallonitrene with a triplet ground state. Nat. Chem. 12, 1054–1059 (2020).Article 
CAS 
PubMed 

Google Scholar 
Schmidt-Räntsch, T. et al. Nitrogen atom transfer catalysis by metallonitrene C–H insertion: photocatalytic amidation of aldehydes. Angew. Chem. Int. Ed. 61, e202115626 (2022).Article 

Google Scholar 
Lv, Z.-J. et al. Stabilizing doubly deprotonated diazomethane: isolable complexes with CN22− and CN2− radical ligands. J. Am. Chem. Soc. 144, 21872–21877 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kawano, M., Hirai, K., Tomioka, H. & Ohashi, Y. Structure analysis of a transient triplet carbene trapped in a crystal. J. Am. Chem. Soc. 123, 6904–6908 (2001).Article 
CAS 

Google Scholar 
Kawano, M., Hirai, K., Tomioka, H. & Ohashi, Y. Structure determination of triplet diphenylcarbenes by in situ X-ray crystallographic analysis. J. Am. Chem. Soc. 129, 2383–2391 (2007).Article 
CAS 
PubMed 

Google Scholar 
Nakajo, T. et al. Triplet carbene with highly enhanced thermal stability in the nanospace of a metal–organic framework. J. Am. Chem. Soc. 143, 8129–8136 (2021).Article 
CAS 
PubMed 

Google Scholar 
Das, A., Reibenspies, J. H., Chen, Y.-S. & Powers, D. C. Direct characterization of a reactive lattice-confined Ru2 nitride by photocrystallography. J. Am. Chem. Soc. 139, 2912–2915 (2017).Article 
CAS 
PubMed 

Google Scholar 
Das, A., Chen, Y.-S., Reibenspies, J. H. & Powers, D. C. Characterization of a reactive Rh2 nitrenoid by crystalline matrix isolation. J. Am. Chem. Soc. 141, 16232–16236 (2019).Article 
CAS 
PubMed 

Google Scholar 
Das, A. et al. In crystallo snapshots of Rh2-catalyzed C–H amination. J. Am. Chem. Soc. 142, 19862–19867 (2020).Article 
CAS 
PubMed 

Google Scholar 
Jung, H. et al. Mechanistic snapshots of rhodium-catalyzed acylnitrene transfer reactions. Science 381, 525–532 (2023).Article 
CAS 
PubMed 

Google Scholar 
Matsumura, N. et al. Synthesis of new transition metal carbene complexes from π-sulfurane compounds: reaction of 10-S-3 tetraazapentalene derivatives with Pd(PPh3)4 and RhCl(PPh3)3. J. Am. Chem. Soc. 117, 3623–3624 (1995).Article 
CAS 

Google Scholar 
Comanescu, C. C. & Iluc, V. M. Synthesis and reactivity of a nucleophilic palladium(II) carbene. Organometallics 33, 6059–6064 (2014).Article 
CAS 

Google Scholar 
Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).Article 
PubMed 

Google Scholar 
Mann, J. B., Meek, T. L., Knight, E. T., Capitani, J. F. & Allen, L. C. Configuration energies of the d-block elements. J. Am. Chem. Soc. 122, 5132–5137 (2000).Article 
CAS 

Google Scholar 
Hoffmann, R. et al. From widely accepted concepts in coordination chemistry to inverted ligand fields. Chem. Rev. 116, 8173–8192 (2016).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles