Conjugated bis(enaminones) as effective templates for rotaxane assembly and their post-synthetic modifications

Sauvage, J.-P. & Garpard, P. From Non-Covalent Assemblies to Molecular Machines (Wiley, 2011).
Google Scholar 
Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).Book 

Google Scholar 
Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).Article 
CAS 
PubMed 

Google Scholar 
Balzani, V., Credi, A. & Venturi, M. Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009).Article 
CAS 
PubMed 

Google Scholar 
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lancia, F., Ryabchun, A. & Katsonis, N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 3, 536–551 (2019).Article 
CAS 

Google Scholar 
Mondal, A., Toyoda, R., Costil, R. & Feringa, B. L. Chemically driven rotatory molecular machines. Angew. Chem. Int. Ed. 61, e202206631 (2022).Article 
CAS 

Google Scholar 
Borsley, S., Leigh, D. A. & Roberts, B. M. W. Chemical fuels for molecular machinery. Nat. Chem. 14, 728–738 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhang, L. et al. Artificial molecular pumps. Nat. Rev. Methods Prim. 4, 13 (2024).Article 
CAS 

Google Scholar 
Wasserman, E. The preparation of interlocking rings: a catenane. J. Am. Chem. Soc. 82, 4433–4434 (1960).Article 
CAS 

Google Scholar 
Baluna, A. S. et al. In search of Wasserman’s catenane. J. Am. Chem. Soc. 145, 9825–9833 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Harrison, I. T. & Harrison, S. Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 89, 5723–5724 (1967).Article 
CAS 

Google Scholar 
Borodin, O., Shchukin, Y., Robertson, C. C., Richter, S. & von Delius, M. Self-assembly of stimuli-responsive [2]rotaxanes by amidinium exchange. J. Am. Chem. Soc. 143, 16448–16457 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
López-Moreno, A. et al. Single-walled carbon nanotubes encapsulated within metallacycles. Angew. Chem. Int. Ed. 61, e202208189 (2022).Article 

Google Scholar 
Tsai, C.-Y., Cheng, H.-T. & Chiu, S.-H. Improbable rotaxanes constructed from surrogate malonate rotaxanes as encircled methylene synthons. Angew. Chem. Int. Ed. 62, e202308974 (2023).Article 
CAS 

Google Scholar 
Fujimura, K., Ueda, Y., Yamaoka, Y., Takasu, K. & Kawabata, T. Rotaxane synthesis by an end-capping strategy via swelling axle-phenols. Angew. Chem. Int. Ed. 62, e202303078 (2023).Article 
CAS 

Google Scholar 
Wada, K. et al. Diastereoselective rotaxane synthesis with pillar[5]arenes via co-crystallization and solid-state mechanochemical processes. J. Am. Chem. Soc. 145, 15324–15330 (2023).Article 
CAS 
PubMed 

Google Scholar 
Erichsen, A., Peters, G. H. J. & Beeren, S. R. Templated enzymatic synthesis of δ-cyclodextrin. J. Am. Chem. Soc. 145, 4882–4891 (2023).Article 
CAS 
PubMed 

Google Scholar 
May, J. H., Van Raden, J. M., Maust, R. L., Zakharov, L. N. & Jasti, R. Active template strategy for the preparation of π-conjugated interlocked nanocarbons. Nat. Chem. 15, 170–176 (2023).Article 
CAS 
PubMed 

Google Scholar 
McCarthy, D. R. et al. Kinetically controlled synthesis of rotaxane geometric isomers. Chem. Sci. 15, 4860–4870 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hicguet, M. et al. Threading a linear molecule through a macrocycle thanks to boron: optical properties of the threaded species and synthesis of a rotaxane. Angew. Chem. Int. Ed. 63, e202318297 (2024).Article 
CAS 

Google Scholar 
Asthana, D. et al. Decorating polymer beads with 1014 inorganic-organic [2]rotaxanes as shown by spin counting. Commun. Chem. 5, 73 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
d’Orchymont, F. & Holland, J. P. Asymmetric rotaxanes as dual-modality supramolecular imaging agents for targeting cancer biomarkers. Commun. Chem. 6, 107 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Schalley, C. A., Weilandt, T., Brüggemann, J. & Vögtle, F. Hydrogen-bond-mediated template synthesis of rotaxanes, catenanes, and knotanes. Top. Curr. Chem. 248, 141–200 (2005).Berna, J., Bottari, G., Leigh, D. A. & Perez, E. M. Amide-based molecular shuttles (2001–2006). Pure Appl. Chem. 79, 39–54 (2007).Article 
CAS 

Google Scholar 
Brouwer, A. M. et al. Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291, 2124–2128 (2001).Article 
CAS 
PubMed 

Google Scholar 
Berna, J. et al. Dampened circumrotation by CH⋯π interactions in hydrogen bonded [2]rotaxanes. Chem. Commun. 48, 5677–5679 (2012).Article 
CAS 

Google Scholar 
Clegg, W. et al. “Smart” rotaxanes: shape memory and control in tertiary amide peptido[2]rotaxanes. J. Am. Chem. Soc. 121, 4124–4129 (1999).Article 
CAS 

Google Scholar 
Asakawa, M. et al. Switching “on” and “off” the expression of chirality in peptide rotaxanes. J. Am. Chem. Soc. 124, 2939–2950 (2002).Article 
CAS 
PubMed 

Google Scholar 
D’Souza, D. M. et al. Nitrone [2]rotaxanes: simultaneous chemical protection and electrochemical activation of a functional group. J. Am. Chem. Soc. 132, 9465–9470 (2010).Article 
PubMed 

Google Scholar 
Gassensmith, J. J., Baumes, J. M. & Smith, B. D. Discovery and early development of squaraine rotaxanes. Chem. Commun. 42, 6329–6338 (2009).Article 

Google Scholar 
Ahmed, R. et al. Phosphorus-based functional groups as hydrogen bonding templates for rotaxane formation. J. Am. Chem. Soc. 133, 12304–12310 (2011).Article 
CAS 
PubMed 

Google Scholar 
Martinez-Cuezva, A., Berna, J., Orenes, R.-A., Pastor, A. & Alajarin, M. Small-molecule recognition for controlling molecular motion in hydrogen-bond-assembled rotaxanes. Angew. Chem. Int. Ed. 53, 6762–6767 (2014).Article 
CAS 

Google Scholar 
Martinez-Cuezva, A. et al. Versatile control of the submolecular motion of di(acylamino)pyridine-based [2]rotaxanes. Chem. Sci. 6, 3087–3094 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Calles, M. et al. Enhancing the selectivity of prolinamide organocatalysts using the mechanical bond in [2]rotaxanes. Chem. Sci. 11, 3629–3635 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berna, J., Alajarin, M. & Orenes, R.-A. Azodicarboxamides as template binding motifs for the building of hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 132, 10741–10747 (2010).Article 
CAS 
PubMed 

Google Scholar 
Berna, J., Alajarin, M., Marin-Rodriguez, C. & Franco-Pujante, C. Redox divergent conversion of a [2]rotaxane into two distinct degenerate partners with different shuttling dynamics. Chem. Sci. 3, 2314–2320 (2012).Article 
CAS 

Google Scholar 
Leigh, D. A. et al. Pyridyl-acyl hydrazone rotaxanes and molecular shuttles. J. Am. Chem. Soc. 139, 7104–7109 (2017).Article 
CAS 
PubMed 

Google Scholar 
Dommaschk, M., Echavarren, J., Leigh, D. A., Marcos, V. & Singleton, T. A. Dynamic control of chiral space through local symmetry breaking in a rotaxane organocatalyst. Angew. Chem. Int. Ed. 58, 14955–14958 (2019).Article 
CAS 

Google Scholar 
Altieri, A. et al. Sulfur-containing amide-based [2]rotaxanes and molecular shuttles. Chem. Sci. 2, 1922–1928 (2011).Article 
CAS 

Google Scholar 
Martinez-Cuezva, A. et al. Photoswitchable interlocked thiodiglycolamide as a cocatalyst of a chalcogeno-Baylis–Hillman reaction. Chem. Sci. 8, 3775–3780 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Perez, J. M., Alajarin, M., Martinez-Cuezva, A. & Berna, J. Reactivity of glutaconamides within [2]rotaxanes: mechanical bond controlled chemoselective synthesis of highly reactive α-ketoamides and their light-triggered cyclization. Angew. Chem. Int. Ed. 62, e202302681 (2023).Article 

Google Scholar 
Gatti, F. G. et al. Stiff, and sticky in the right places: the dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. J. Am. Chem. Soc. 123, 5983–5989 (2001).Article 
CAS 
PubMed 

Google Scholar 
Martinez-Cuezva, A., Lopez-Leonardo, C., Bautista, D., Alajarin, M. & Berna, J. Stereocontrolled synthesis of β-lactams within [2]rotaxanes: showcasing the chemical consequences of the mechanical bond. J. Am. Chem. Soc. 138, 8726–8729 (2016).Article 
CAS 
PubMed 

Google Scholar 
Waelès, P., Gauthier, M. & Coutrot, F. Challenges and opportunities in the post-synthetic modification of interlocked molecules. Angew. Chem. Int. Ed. 60, 16778–16799 (2021).Article 

Google Scholar 
Rowan, S. J. & Stoddart, J. F. Precision molecular grafting: exchanging surrogate stoppers in [2]rotaxanes. J. Am. Chem. Soc. 122, 164–165 (2000).Article 
CAS 

Google Scholar 
Zehnder, D. W. II & Smithrud, D. B. Facile synthesis of rotaxanes through condensation reactions of DCC-[2]rotaxanes. Org. Lett. 3, 2485–2487 (2001).Article 
CAS 
PubMed 

Google Scholar 
Hannam, J. S. et al. Controlled submolecular translational motion in synthesis: a mechanically interlocking auxiliary. Angew. Chem. Int. Ed. 43, 3260–3264 (2004).Article 
CAS 

Google Scholar 
Kihara, N., Motoda, S., Yokozawa, T. & Takata, T. End-cap exchange of rotaxane by the Tsuji–Trost allylation reaction. Org. Lett. 7, 1199–1202 (2005).Article 
CAS 
PubMed 

Google Scholar 
Hassan, N. I., del Amo, V., Calder, E. & Philp, D. Low temperature capture of pseudorotaxanes. Org. Lett. 13, 458–461 (2011).Article 
CAS 
PubMed 

Google Scholar 
Legigan, T., Riss-Yaw, B., Clavel, C. & Coutrot, F. Active esters as pseudostoppers for slippage synthesis of [2]pseudorotaxane building blocks: a straightforward route to multi-interlocked molecular machines. Chem. Eur. J. 22, 8835–8847 (2016).Article 
CAS 
PubMed 

Google Scholar 
Nierengarten, I. & Nierengarten, J.-F. Diversity oriented preparation of pillar[5]arene-containing [2]rotaxanes by a stopper exchange strategy. ChemistryOpen 9, 393–400 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Waelès, P., Gauthier, M. & Coutrot, F. Study of [2]- and [3]rotaxanes obtained by post-synthetic aminolysis of a kinetically stable carbonate-containing pseudorotaxane. Eur. J. Org. Chem. 2022, e202101385 (2022).de Juan, A. et al. A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat. Chem. 14, 179–187 (2022).Article 
PubMed 

Google Scholar 
Becharguia, N. et al. Solution and solvent-free stopper exchange reactions for the preparation of pillar[5]arene-containing [2] and [3]rotaxanes. Chem. Eur. J. 30, e202304131 (2024).Article 
CAS 
PubMed 

Google Scholar 
Gauthier, M., Waelès, P. & Coutrot, F. Post-synthetic macrocyclization of rotaxane building blocks. ChemPlusChem 87, e202100458 (2022).Article 
CAS 

Google Scholar 
Lopez-Leonardo, C., Martinez-Cuezva, A., Bautista, D., Alajarim, M. & Berna, J. Homo and heteroassembly of amide-based [2]rotaxanes using α,α′-dimethyl-p-xylylenediamines. Chem. Commun. 55, 6787–6790 (2019).Article 
CAS 

Google Scholar 
Saura-Sanmartin, A. et al. Copper-linked rotaxanes for the building of photoresponsive metal organic frameworks with controlled cargo delivery. J. Am. Chem. Soc. 142, 13442–1344 (2020).Article 
CAS 
PubMed 

Google Scholar 
Martinez-Cuezva, A. et al. Thermally and photochemically induced dethreading of fumaramide-based kinetically stable pseudo[2]rotaxanes. Eur. J. Org. Chem. 2019, 3480–3488 (2019).Saura-Sanmartin, A., Lopez-Sanchez, J., Lopez-Leonardo, C., Pastor, A. & Berna, J. Exploring the chemistry of the mechanical bond: synthesis of a [2]rotaxane through multicomponent reactions. J. Chem. Educ. 100, 3355–3363 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Washino, G., Soto, M. A., Wolff, S. & MacLachlan, M. J. Preprogrammed assembly of supramolecular polymer networks via the controlled disassembly of a metastable rotaxane. Commun. Chem. 5, 155 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Y., Zhou, R. & Wan, J.-P. Water promoted synthesis of enaminones, mechanism investigation and application in multicomponent reactions. Synth. Commun. 43, 2475–2483 (2013).Article 
CAS 

Google Scholar 
Zhou, S., Liu, D.-Y., Wang, S., Tian, J.-S. & Loh, T.-P. An efficient method for the synthesis of 2-pyridones via C–H bond functionalization. Chem. Commun. 56, 15020–15023 (2020).Article 
CAS 

Google Scholar 
Farias, F. F. S. et al. The rotational movement in solution of fumaramide- vs. succinamide [2]rotaxanes: the influence of intercomponent interactions. J. Mol. Liq. 385, 122291 (2023).Article 
CAS 

Google Scholar 
Gasparro, P. & Kolodny, N. H. NMR spectroscopy and the study of dynamic processes. J. Chem. Educ. 54, 258–261 (1977).Article 
CAS 

Google Scholar 
Sandström, J. Dynamic NMR Spectroscopy (Academic Press, 1982).Õki, M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry (VCH, 1985).
Google Scholar 
Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martins, M. A. P. et al. Density functional theory and quantum theory of atoms in molecules analysis: influence of intramolecular interactions on pirouetting movement in tetraalkylsuccinamide[2]rotaxanes. Cryst. Growth Des. 17, 5845–5857 (2017).Article 
CAS 

Google Scholar 
Johnston, A. G., Leigh, D. A., Murphy, A., Smart, J. P. & Deegan, M. D. The synthesis and solubilization of amide macrocycles via rotaxane formation. J. Am. Chem. Soc. 118, 10662–10663 (1996).Article 
CAS 

Google Scholar 
Li, D.-H. & Smith, B. D. Molecular recognition using tetralactam macrocycles with parallel aromatic sidewalls. Beilstein J. Org. Chem. 15, 1086–1095 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Corra, S. et al. Chemical on/off switching of mechanically planar chirality and chiral anion recognition in a [2]rotaxane molecular shuttle. J. Am. Chem. Soc. 141, 9129–9133 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Douarre, M., Martí-Centelles, V., Rossy, C., Pianet, I. & McClenaghan, N. D. Regulation of macrocycle shuttling rates in [2]rotaxanes by amino-acid speed bumps in organic–aqueous solvent mixtures. Eur. J. Org. Chem. 36, 5820–5827 (2020).Article 

Google Scholar 
Chen, S. et al. Real-time observation of the dynamics of an individual rotaxane molecular shuttle using a single-molecule junction. Chem 8, 243–252 (2022).Article 
CAS 

Google Scholar 
Gatti, F. G. et al. Photoisomerization of a rotaxane hydrogen bonding template: light-induced acceleration of a large amplitude rotational motion. Proc. Natl Acad. Sci. USA 100, 10–14 (2003).Article 
CAS 
PubMed 

Google Scholar 
Leigh, D. A. & Pérez, E. M. Shuttling through reversible covalent chemistry. Chem. Commun. 20, 2262–2263 (2004).Article 

Google Scholar 
Saura-Sanmartin, A. et al. Control of the assembly of a cyclic hetero[4]pseudorotaxane from a self-complementary [2]rotaxane. Chem. Sci. 14, 4143–4151 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles