Computational studies on the catalytic potential of the double active site for enzyme engineering

Reetz, M. T. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6, 145–150. https://doi.org/10.1016/s1367-5931(02)00297-1 (2002).Article 
CAS 
PubMed 

Google Scholar 
Gopinath, S. C. B., Anbu, P., Lakshmipriya, T. & Hilda, A. Strategies to characterize fungal lipases for applications in medicine and dairy industry. Biomed. Res. Int. https://doi.org/10.1155/2013/154549 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Gupta, R., Gupta, N. & Rathi, P. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763–781. https://doi.org/10.1007/s00253-004-1568-8 (2004).Article 
CAS 
PubMed 

Google Scholar 
Ortiz, C. et al. Novozym 435: The “Perfect” lipase immobilized biocatalyst?. Catal. Sci. Technol. 9, 2380–2420. https://doi.org/10.1039/c9cy00415g (2019).Article 
CAS 

Google Scholar 
Calero, J. et al. Selective ethanolysis of sunflower oil with lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation. N Biotechnol 31(6), 596–601. https://doi.org/10.1016/j.nbt.2014.02.008 (2014).Article 
CAS 
PubMed 

Google Scholar 
Jegannathan, K. R., Abang, S., Poncelet, D., Chan, E. S. & Ravindra, P. Production of biodiesel using immobilized lipase—a critical review. Critical Rev. Biotechnol. 28, 253–264. https://doi.org/10.1080/07388550802428392 (2008).Article 
CAS 

Google Scholar 
Calero, J. et al. Selective ethanolysis of sunflower oil with lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation. N. Biotechnol. 31(6), 596–601. https://doi.org/10.1016/j.nbt.2014.02.008 (2014).Article 
CAS 
PubMed 

Google Scholar 
Park, J. Y. & Park, K. M. Lipase and Its unique selectivity: A mini-review. J. Chem. https://doi.org/10.1155/2022/7609019 (2022).Article 

Google Scholar 
Chang, R. C., Chen, J. C. & Shaw, J. F. Studying the active site pocket of staphylococcus hyicuslipase by site-directed mutagenesis. Biochem. Biophys. Res. Commun. 229(1), 6–10 (1996).Article 
CAS 
PubMed 

Google Scholar 
Sugiura, M. & Isobe, M. Studies on the mechanism of the lipase reaction. Biochimica et Biophysica Acta (BBA) Enzymol. 397(2), 412–417. https://doi.org/10.1016/0005-2744(75)90130-8 (1975).Article 
CAS 

Google Scholar 
Van Der Ent, F. et al. Structure and mechanism of a cold-adapted bacterial lipase. Biochemistry https://doi.org/10.1021/acs.biochem.2c00087 (2022).Article 
PubMed 

Google Scholar 
Kumar, A., Dhar, K., Kanwar, S. S. & Arora, P. K. Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18(1), 2. https://doi.org/10.1186/s12575-016-0033-2 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Patti, A. & Sanfilippo, C. Stereoselective promiscuous reactions catalyzed by lipases. Int. J. Mol. Sci. 23(5), 2675. https://doi.org/10.3390/ijms23052675 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sadeghi Googheri, M. S., Housaindokht, M. R. & Sabzyan, H. Reaction mechanism and free energy profile for acylation of candida antarctica lipase B with methylcaprylate and acetylcholine: Density functional theory calculations. J. Mol. Graph. Model 54, 131–140. https://doi.org/10.1016/j.jmgm.2014.10.001 (2014).Article 
CAS 

Google Scholar 
Santiago, G. et al. Rational engineering of multiple active sites in an ester hydrolase. Biochemistry 57(15), 2245–2255. https://doi.org/10.1021/acs.biochem.8b00274 (2018).Article 
CAS 
PubMed 

Google Scholar 
Alonso, S. et al. Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis. Nat. Catal. 3(3), 319–328. https://doi.org/10.1038/s41929-019-0394-4 (2019).Article 
CAS 

Google Scholar 
Morris, G. M. et al. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14), 16391662 (1998).Article 

Google Scholar 
Morris, G. M. et al. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. SOFTWARE Open Access Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform; 2012; Vol. 4. https://www.jcheminf.com/content/4/1/17.Forli, S. et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kumar Ramalingam, P. et al. In silico screening of chlorogenic acids from plant sources against human translocase-I to identify competitive inhibitors to treat diabetes. ACS Omega 9(6), 6561–6568. https://doi.org/10.1021/acsomega.3c07267 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E (1995).Article 
ADS 
CAS 

Google Scholar 
Abraham, M. J. et al. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001 (2015).Article 
ADS 

Google Scholar 
Van Der Spoel, D. et al. GROMACS: Fast, flexible, and free. J. Comput. Chem. https://doi.org/10.1002/jcc.20291 (2005).Article 
PubMed 

Google Scholar 
Pronk, S. et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the amber Ff99SB protein force field. Proteins: Struct. Funct. Bioinform. 78(8), 1950–1958. https://doi.org/10.1002/prot.22711 (2010).Article 
CAS 

Google Scholar 
Shabane, P. S., Izadi, S. & Onufriev, A. V. General purpose water model can improve atomistic simulations of intrinsically disordered proteins. J. Chem. Theory Comput. 15(4), 2620–2634. https://doi.org/10.1021/acs.jctc.8b01123 (2019).Article 
CAS 
PubMed 

Google Scholar 
Leontyev, I. V; Stuchebrukhov, A. A.; Paragon, A.; Environment, P. Subscriber Access Provided by UNIV OF ARIZONA Polarizable Mean-Field Model of Water for Biological Simulations Polarizable Mean-Field Model of Water for Biological Simulations with Amber and Charmm Force Fields; 2012. http://pubs.acs.org.Anandakrishnan, R., Izadi, S. & Onufriev, A. V. Why computed protein folding landscapes are sensitive to the water model. J. Chem. Theory Comput. 15(1), 625–636. https://doi.org/10.1021/acs.jctc.8b00485 (2019).Article 
CAS 
PubMed 

Google Scholar 
He, X., Man, V. H., Yang, W., Lee, T.-S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. https://doi.org/10.1063/5.0019056 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Sousa da Silva, A. W. & Vranken, W. F. ACPYPE – AnteChamber PYthon Parser InterfacE. BMC Res. Notes 5(1), 367. https://doi.org/10.1186/1756-0500-5-367 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Zahariev, F., Gordon, M. S. & Levy, M. Energy components in spin-density functional theory. Phys. Rev. A (Coll Park) 104(2), 022815. https://doi.org/10.1103/PhysRevA.104.022815 (2021).Article 
ADS 
MathSciNet 
CAS 

Google Scholar 
Gordon, M. S. & Fischer, H. A molecular orbital study of the isomerization mechanism of diazacumulenes. J. Am. Chem. Soc. 90(10), 2471–2476. https://doi.org/10.1021/ja01012a004 (1968).Article 
CAS 

Google Scholar 
Pople, J. A. & Gordon, M. Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments. J. Am. Chem. Soc. 89(17), 4253–4261. https://doi.org/10.1021/ja00993a001 (1967).Article 
CAS 
PubMed 

Google Scholar 
Harger, M. & Ren, P. Virial-based berendsen barostat on GPUs using AMOEBA in tinker-OpenMM. Results Chem. https://doi.org/10.1016/j.rechem.2019.100004 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Kadoura, A., Salama, A. & Sun, S. Switching between the NVT and NpT ensembles using the reweighting and reconstruction scheme. Proc. Comput. Sci. 51, 1259–1268. https://doi.org/10.1016/j.procs.2015.05.309 (2015).Article 

Google Scholar 
Messias, A., Santos, D. E. S., Pontes, F. J. S., Lima, F. S. & Soares, T. A. Out of sight, out of mind: The effect of the equilibration protocol on the structural ensembles of charged glycolipid bilayers. Molecules 25(21), 5120. https://doi.org/10.3390/molecules25215120 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. L., Zhu, Y. L., Lu, Z. Y. & Laaksonen, A. Electrostatic interactions in soft particle systems: Mesoscale simulations of ionic liquids. Soft Matter 14(21), 4252–4267. https://doi.org/10.1039/c8sm00387d (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Abraham, M. J. & Gready, J. E. Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J. Comput. Chem. 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773 (2011).Article 
CAS 
PubMed 

Google Scholar 
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30(1), 70–82. https://doi.org/10.1002/pro.3943 (2021).Article 
CAS 
PubMed 

Google Scholar 
Huang, C. C., Meng, E. C., Morris, J. H., Pettersen, E. F. & Ferrin, T. E. Enhancing UCSF chimera through web services. Nucleic Acids Res. https://doi.org/10.1093/nar/gku377 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084 (2004).Article 
CAS 
PubMed 

Google Scholar 
Fernandes, H. S., Sousa, S. F. & Cerqueira, N. M. F. S. A. VMD store-A VMD plugin to browse, discover, and install VMD extensions. J. Chem. Inf. Model 59(11), 4519–4523. https://doi.org/10.1021/acs.jcim.9b00739 (2019).Article 
CAS 
PubMed 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5 (1996).Article 
CAS 
PubMed 

Google Scholar 
Seeber, M. et al. Software news and updates wordom: A user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. J. Comput. Chem. 32(6), 1183–1194. https://doi.org/10.1002/jcc.21688 (2011).Article 
CAS 
PubMed 

Google Scholar 
Seeber, M., Cecchini, M., Rao, F., Settanni, G. & Caflisch, A. Wordom: A program for efficient analysis of molecular dynamics simulations. Bioinformatics 23(19), 2625–2627. https://doi.org/10.1093/bioinformatics/btm378 (2007).Article 
CAS 
PubMed 

Google Scholar 
Sweeney, P. et al. Structure, dynamics, and molecular inhibition of the Staphylococcus aureus M1A22-TRNA methyltransferase TrmK. J. Biol. Chem. 298(6), 102040. https://doi.org/10.1016/j.jbc.2022.102040 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sullivan, S. F. et al. Towards universal synthetic heterotrophy using a metabolic coordinator. Metab. Eng. 79, 14–26. https://doi.org/10.1016/j.ymben.2023.07.001 (2023).Article 
CAS 
PubMed 

Google Scholar 
Jurcik, A. et al. CAVER Analyst 2.0: Analysis and visualization of Chan–Nels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 34(20), 3586–3588. https://doi.org/10.1093/bioinformatics/bty386/4993945 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pavelka, A. et al. CAVER: Algorithms for analyzing dynamics of tunnels in macromolecules. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 505–517. https://doi.org/10.1109/TCBB.2015.2459680 (2016).Article 
PubMed 

Google Scholar 
Kozlikova, B. et al. CAVER analyst 1.0: Graphic tool for interactive visualization and analysis of tunnels and channels in protein structures. Bioinformatics 30(18), 2684–2685 (2014).Article 
CAS 
PubMed 

Google Scholar 
Raju, D. R. et al. Extensive modelling and quantum chemical study of sterol C-22 desaturase mechanism: A commercially important cytochrome P450 family. Catal. Today 397–399, 50–62. https://doi.org/10.1016/j.cattod.2021.12.004 (2022).Article 
CAS 

Google Scholar 
Bonomi, M.; Camilloni, C. Biomolecular Simulations Methods and Protocols Methods in Molecular Biology 2022. http://www.springer.com/series/7651.Sucerquia, D., Parra, C., Cossio, P. & Lopez-Acevedo, O. Ab initio metadynamics determination of temperature-dependent free-energy landscape in ultrasmall silver clusters. J. Chem. Phys. 156(15), 154301. https://doi.org/10.1063/5.0082332 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Bonomi, M. et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180(10), 1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011 (2009).Article 
ADS 
CAS 

Google Scholar 
Hsu, W.-T., Piomponi, V., Merz, P. T., Bussi, G. & Shirts, M. R. Alchemical metadynamics: Adding alchemical variables to metadynamics to enhance sampling in free energy calculations. J. Chem. Theory Comput. 19(6), 1805–1817. https://doi.org/10.1021/acs.jctc.2c01258 (2023).Article 
CAS 
PubMed 

Google Scholar 
Nava, M. Implementing dimer metadynamics using gromacs. J. Comput. Chem. 39, 2126–2132. https://doi.org/10.1002/jcc.25386 (2018).Article 
CAS 
PubMed 

Google Scholar 
Bertazzo, M., Gobbo, D., Decherchi, S. & Cavalli, A. Machine learning and enhanced sampling simulations for computing the potential of mean force and standard binding free energy. J. Chem. Theory Comput. 17(8), 5287–5300. https://doi.org/10.1021/acs.jctc.1c00177 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shrivastav, G., Khan, T. S., Agarwal, M. & Haider, M. A. A car-parrinello molecular dynamics simulation study of the retro diels-alder reaction for partially saturated 2-pyrones in water. J. Phys. Chem. C 122(22), 11599–11607. https://doi.org/10.1021/acs.jpcc.8b00250 (2018).Article 
CAS 

Google Scholar 
Biswas, S.; Wong, B. M. Ab Initio Metadynamics Calculations Reveal Complex Interfacial Effects in Acetic Acid Deprotonation Dynamics; 2021.Trivedi, V. D. et al. In-depth sequence–function characterization reveals multiple pathways to enhance enzymatic activity. ACS Catal. 12(4), 2381–2396. https://doi.org/10.1021/acscatal.1c05508 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lesitha Jeeva Kumari, J., Jesu Jaya Sudan, R. & Sudandiradoss, C. Evaluation of peptide designing strategy against subunit reassociation in mucin 1: A steered molecular dynamics approach. PLoS One https://doi.org/10.1371/journal.pone.0183041 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Grubmüller, H., Heymann, B. & Tavan, P. Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271(5251), 997–999. https://doi.org/10.1126/science.271.5251.997 (1996).Article 
ADS 
PubMed 

Google Scholar 
Skovstrup, S., David, L., Taboureau, O. & Jørgensen, F. S. A steered molecular dynamics study of binding and translocation processes in the GABA transporter. PLoS One https://doi.org/10.1371/journal.pone.0039360 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Shen, M. et al. Steered molecular dynamics simulations on the binding of the appendant structure and helix-Β2 in domain-swapped human cystatin C dimer. J. Biomol. Struct. Dyn. 30(6), 652–661. https://doi.org/10.1080/07391102.2012.689698 (2012).Article 
CAS 
PubMed 

Google Scholar 
Genchev, G. Z. et al. Mechanical signaling on the single protein level studied using steered molecular dynamics. Cell Biochem. Biophys. https://doi.org/10.1007/s12013-009-9064-5 (2009).Article 
PubMed 

Google Scholar 
Vargiu, A. V. et al. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump. Biochim. Biophys. Acta Gen. Subj. 1862(4), 836–845. https://doi.org/10.1016/j.bbagen.2018.01.010 (2018).Article 
CAS 
PubMed 

Google Scholar 
Bowman, J. D. & Lindert, S. Molecular dynamics and umbrella sampling simulations elucidate differences in troponin C isoform and mutant hydrophobic patch exposure. J. Phys. Chem. B 122(32), 7874–7883. https://doi.org/10.1021/acs.jpcb.8b05435 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Iida, S., Nakamura, H. & Higo, J. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation. Biochem. J. https://doi.org/10.1042/BCJ20160053 (2016).Article 
PubMed 

Google Scholar 
Londhe, A. M. H., Gadhe, C. G., Lim, S. M. & Pae, A. N. Investigation of molecular details of keap1-Nrf2 inhibitors using molecular dynamics and umbrella sampling techniques. Molecules https://doi.org/10.3390/molecules24224085 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Hub, J. S., de Groot, B. L. & van der Spoel, D. G_wham—a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J. Chem. Theory Comput. 6(12), 3713–3720. https://doi.org/10.1021/ct100494z (2010).Article 
CAS 

Google Scholar 
Petřek, M. et al. CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform. https://doi.org/10.1186/1471-2105-7-316 (2006).Article 

Google Scholar 

Hot Topics

Related Articles