New tactics in the design of theranostic radiotracers

Sgouros, G., Bodei, L., McDevitt, M. R. & Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug Discov. 19, 589–608 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Strosberg, J. et al. Phase 3 Trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Research, P. Nuclear Medicine Market. https://www.precedenceresearch.com/nuclear-medicine-market/ ‘The global nuclear medicine market, forecast period 2024 to 2033.’ (2024).Holland, J. P., Williamson, M. J. & Lewis, J. S. Unconventional nuclides for radiopharmaceuticals. Mol. Imaging 9, 1–20 (2010).Article 
CAS 
PubMed 

Google Scholar 
Nickles, R. J. The production of a broader palette of PET tracers. J. Label. Compd. Radiopharm. 46, 1–27 (2003).Article 
CAS 

Google Scholar 
Blower, P. J. A nuclear chocolate box: the periodic table of nuclear medicine. Dalton Trans. 44, 4819–4844 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hevesy, G. The absorption and translocation of lead by Plants A contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem. J. 17, 439–445 (1923).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chiewitz, O. & Hevesy, G. Radioactive indicators in the study of phosphorus metabolism in rats. Nature 136, 754–755 (1935).Article 
CAS 

Google Scholar 
Cockcroft, J. D. George De Hevesy. Biogr. Mem. Fell. R. Soc. 13, 125–166 (1967).CAS 

Google Scholar 
Levi, H. George Hevesy and his concept of radioactive indicators-In retrospect. Eur. J. Nucl. Med. 1, 3–10 (1976).Article 
CAS 
PubMed 

Google Scholar 
Ruth, T. J. The uses of radiotracers in the life sciences. Rep. Prog. Phys. 72, 016701 (2009).Guidance for Industry, Investigators, and Reviewers Exploratory IND Studies. https://www.fda.gov/media/72325/download (2006).Frost, J. J. et al. Comparison of [11C]diprenorphine and [11C]carfentanil binding to opiate receptors in humans by positron emission tomography. J. Cereb. Blood Flow Metab. 10, 484–492 (1990).Article 
CAS 
PubMed 

Google Scholar 
Newberg, A. B. et al. Dosimetry of 11C-carfentanil, a μ-opioid receptor imaging agent. Nucl. Med. Commun. 30, 314–318 (2009).Article 
CAS 
PubMed 

Google Scholar 
Eriksson, O. & Antoni, G. [11C]Carfentanil binds preferentially to μ-Opioid receptor subtype 1 compared to subtype 2. Mol. Imaging 14, 476–483 (2015).Article 
CAS 
PubMed 

Google Scholar 
Chigoho, D. M., Bridoux, J. & Hernot, S. Reducing the renal retention of low-to-moderate-molecular-weight radiopharmaceuticals. Curr. Opin. Chem. Biol. 63, 219–228 (2021).Article 
CAS 
PubMed 

Google Scholar 
Fay, R. & Holland, J. P. The impact of emerging bioconjugation chemistries on radiopharmaceuticals. J. Nucl. Med. 60, 587–591 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zeglis, B. M. et al. A practical guide to the construction of radiometallated bioconjugates for positron emission tomography. Dalton Trans. 40, 6168–6195 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Adumeau, P., Sharma, S. K., Brent, C. & Zeglis, B. M. Site-specifically labeled immunoconjugates for molecular imaging—Part 1: Cysteine residues and Glycans. Mol. Imaging Biol. 18, 1–17 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Adumeau, P., Sharma, S. K., Brent, C. & Zeglis, B. M. Site-specifically labeled immunoconjugates for molecular imaging—Part 2: peptide tags and unnatural amino acids. Mol. Imaging Biol. 18, 153–165 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Debon, A., Siirola, E. & Snajdrova, R. Enzymatic bioconjugation: a perspective from the pharmaceutical industry. JACS Au 3, 1267–1283 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Boros, E. & Holland, J. P. Chemical aspects of metal ion chelation in the synthesis and application antibody-based radiotracers. J. Label. Compd. Radiopharm. 61, 652–671 (2018).Article 
CAS 

Google Scholar 
Agarwal, P. & Bertozzi, C. R. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem. 26, 176–192 (2015).Article 
CAS 
PubMed 

Google Scholar 
Lang, K. & Chin, J. W. Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16–20 (2014).Article 
CAS 
PubMed 

Google Scholar 
Dennler, P., Fischer, E. & Schibli, R. Antibody conjugates: from heterogeneous populations to defined reagents. Antibodies 4, 197–224 (2015).Article 

Google Scholar 
Jeger, S. et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chemie Int. Ed. 49, 9995–9997 (2010).Article 
CAS 

Google Scholar 
Dennler, P. et al. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug. Chem. 25, 569–578 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zeglis, B. M. et al. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug. Chem. 24, 1057–1067 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Patra, M., Eichenberger, L. S., Fischer, G. & Holland, J. P. Photochemical conjugation and one-pot radiolabelling of antibodies for Immuno-PET. Angew. Chemie Int. Ed. 58, 1928–1933 (2019).Article 
CAS 

Google Scholar 
Patra, M., Klingler, S., Eichenberger, L. S. & Holland, J. P. Simultaneous photoradiochemical labelling of antibodies for immuno-positron emission tomography. iScience 13, 416–431 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guillou, A., Earley, D. F., Patra, M. & Holland, J. P. Light-induced synthesis of protein conjugates and its application in photoradiosynthesis of 89Zr-radiolabeled monoclonal antibodies. Nat. Protoc. 15, 3579–3594 (2020).Article 
CAS 
PubMed 

Google Scholar 
Earley, D. F. et al. Charting the chemical and mechanistic scope of light-triggered protein ligation. JACS Au 2, 646–664 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Holland, J. P., Gut, M., Klingler, S., Fay, R. & Guillou, A. Photochemical reactions in the synthesis of protein–drug conjugates. Chem. A Eur. J. 26, 33–48 (2020).Article 
CAS 

Google Scholar 
Vosjan, M. J. W. D. et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat. Protoc. 5, 739–743 (2010).Article 
CAS 
PubMed 

Google Scholar 
Holland, J. P. et al. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 51, 1293–1300 (2010).Bensch, F. et al. Comparative biodistribution analysis across four different 89Zr-monoclonal antibody tracers — The first step towards an imaging warehouse. Theranostics 8, 4295–4304 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mestel, R. Cancer: imaging with antibodies. Nature 543, 743–746 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wei, W. et al. ImmunoPET: concept, design, and applications. Chem. Rev. 120, 3787–3851 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guillou, A. et al. The influence of a polyethylene Glycol Linker on the metabolism and pharmacokinetics of a 89Zr-Radiolabeled Antibody. Bioconjug. Chem. 32, 1263–1275 (2021).Article 
CAS 
PubMed 

Google Scholar 
Guillou, A., Earley, D. F. & Holland, J. P. Light-activated protein-conjugation and 89Zr-radiolabelling with water-soluble desferrioxamine derivatives. Chem. Eur. J. 26, 7185–7189 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11, 1–18 (2019).Article 
CAS 

Google Scholar 
Maurer, T. S., Edwards, M., Hepworth, D., Verhoest, P. & Allerton, C. M. N. Designing small molecules for therapeutic success: a contemporary perspective. Drug Discov. Today 27, 538–546 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhong, L. et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 6, 1–48 (2021).Li, M., Mei, S., Yang, Y., Shen, Y. & Chen, L. Strategies to mitigate the on- and off-target toxicities of recombinant immunotoxins: an antibody engineering perspective. Antib. Ther. 5, 164–175 (2022).CAS 
PubMed 
PubMed Central 

Google Scholar 
Yazaki, P. J. et al. Tumor targeting of radiometal labeled anti-cea recombinant T84.66 diabody and T84.66 minibody: comparison to radioiodinated fragments. Bioconjug. Chem. 12, 220–228 (2001).Article 
CAS 
PubMed 

Google Scholar 
Kenanova, V. et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res. 65, 622–631 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, A. M. & Senter, P. D. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol. 23, 1137–1146 (2005).Article 
CAS 
PubMed 

Google Scholar 
Wu, A. M. Antibodies and antimatter: the resurgence of immuno-PET. J. Nucl. Med. 50, 2–5 (2009).Article 
CAS 
PubMed 

Google Scholar 
Wu, A. M. Engineered antibodies for molecular imaging of cancer. Methods 65, 139–147 (2014).Article 
CAS 
PubMed 

Google Scholar 
Tsai, W. T. K. & Wu, A. M. Aligning physics and physiology: engineering antibodies for radionuclide delivery. J. Label. Compd. Radiopharm. 61, 693–714 (2018).Article 
CAS 

Google Scholar 
Fanali, G. et al. Human serum albumin: from bench to bedside. Mol. Aspects Med. 33, 209–290 (2012).Article 
CAS 
PubMed 

Google Scholar 
Heneweer, C., Holland, J. P., Divilov, V., Carlin, S. & Lewis, J. S. Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system. J. Nucl. Med. 52, 625–633 (2011).Müller, C., Struthers, H., Winiger, C., Zhernosekov, K. & Schibli, R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J. Nucl. Med. 54, 124–131 (2013).Article 
PubMed 

Google Scholar 
Benešová, M., Umbricht, C. A., Schibli, R. & Müller, C. Albumin-binding PSMA ligands: optimization of the tissue distribution profile. Mol. Pharm. 15, 934–946 (2018).Article 
PubMed 

Google Scholar 
Kaeppeli, S. A. M., Jodal, A., Gotthardt, M., Schibli, R. & Béhé, M. Exendin-4 derivatives with an albumin-binding moiety show decreased renal retention and improved GLP-1 receptor targeting. Mol. Pharm. 16, 3760–3769 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zahnd, C. et al. Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res. 70, 1595–1605 (2010).Article 
CAS 
PubMed 

Google Scholar 
Steiner, D. et al. Half-life extension using serum albumin-binding DARPin® domains. Protein Eng. Des. Sel. 30, 583–591 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Single low-dose injection of evans blue modified PSMA-617 radioligand therapy eliminates prostate-specific membrane antigen positive tumors. Bioconjug. Chem. 29, 3213–3221 (2018).Article 
CAS 
PubMed 

Google Scholar 
Deberle, L. M. et al. Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics 10, 1678–1693 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Müller, C., Schibli, R., Krenning, E. P. & De Jong, M. Pemetrexed improves tumor selectivity of 111In-DTPA-folate in mice with folate receptor-positive ovarian cancer. J. Nucl. Med. 49, 623–629 (2008).Article 
PubMed 

Google Scholar 
Nazarova, L. et al. Effect of modulating FcRn binding on direct and pretargeted tumor uptake of full-length antibodies. Mol. Cancer Ther. 19, 1052–1058 (2020).Article 
CAS 
PubMed 

Google Scholar 
Goldenberg, D. M., Chang, C. H., Rossi, E. A., McBride, W. J. & Sharkey, R. M. Pretargeted molecular imaging and radioimmunotherapy. Theranostics 2, 523–540 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Altai, M., Membreno, R., Cook, B., Tolmachev, V. & Zeglis, B. M. Pretargeted imaging and therapy. J. Nucl. Med. 58, 1553–1559 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sharkey, R. M., Chang, C. H., Rossi, E. A., McBride, W. J. & Goldenberg, D. M. Pretargeting: taking an alternate route for localizing radionuclides. Tumor Biol. 33, 591–600 (2012).Article 
CAS 

Google Scholar 
Larson, S. M., Carrasquillo, J. A., Cheung, N. K. V. & Press, O. W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer 15, 347–360 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cheal, S. M., Chung, S. K., Vaughn, B. A., Cheung, N. K. V. & Larson, S. M. Pretargeting: a path forward for radioimmunotherapy. J. Nucl. Med. 63, 1302–1315 (2022).Article 
CAS 
PubMed 

Google Scholar 
Keinänen, O. et al. Harnessing 64Cu/67Cu for a theranostic approach to pretargeted radioimmunotherapy. Proc. Natl Acad. Sci. USA 117, 28316–28327 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ruggiero, A. et al. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomed. 5, 783–802 (2010).CAS 

Google Scholar 
Maruani, A. et al. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat. Commun. 6, 2–10 (2015).Article 

Google Scholar 
Rossin, R. et al. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat. Commun. 9, 1–11 (2018).Article 
CAS 

Google Scholar 
Burke, B. P. et al. Visualizing Kinetically Robust Co(III)4L6 Assemblies in vivo: SPECT Imaging of the Encapsulated [99mTc]TcO4- Anion. J. Am. Chem. Soc. 140, 16877–16881 (2018).Article 
CAS 
PubMed 

Google Scholar 
Riebe, J. & Niemeyer, J. Mechanically interlocked molecules for biomedical applications. Eur. J. Org. Chem. 2021, 5106–5116 (2021).Article 
CAS 

Google Scholar 
Beeren, S. R., McTernan, C. T. & Schaufelberger, F. The mechanical bond in biological systems. Chem 9, 1378–1412 (2023).Article 
CAS 

Google Scholar 
Casini, A., Woods, B. & Wenzel, M. The promise of self-assembled 3D supramolecular coordination complexes for biomedical applications. Inorg. Chem. 56, 14715–14729 (2017).Article 
CAS 
PubMed 

Google Scholar 
Moreno‐Alcántar, G. & Casini, A. Bioinorganic supramolecular coordination complexes and their biomedical applications. FEBS Lett. 1–12 https://doi.org/10.1002/1873-3468.14535 (2022).Alberto, R., Bergamaschi, G., Braband, H., Fox, T. & Amendola, V. TcO4-: selective recognition and trapping in aqueous solution. Angew. Chemie Int. Ed. 51, 9772–9776 (2012).Article 
CAS 

Google Scholar 
Schmidt, A. et al. Evaluation of new palladium cages as potential delivery systems for the anticancer drug cisplatin. Chem. A Eur. J. 22, 2253–2256 (2016).Article 
CAS 

Google Scholar 
Pöthig, A. & Casini, A. Recent developments of supramolecular metal-based structures for applications in cancer therapy and imaging. Theranostics 9, 3150–3169 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Woods, B. et al. Bioconjugate supramolecular Pd2+ metallacages penetrate the blood brain barrier in vitro and in vivo. Bioconjug. Chem. 32, 1399–1408 (2021).Article 
CAS 
PubMed 

Google Scholar 
Han, J. et al. Bioconjugation of supramolecular metallacages to integrin ligands for targeted delivery of cisplatin. Bioconjug. Chem. 29, 3856–3865 (2018).Article 
CAS 
PubMed 

Google Scholar 
Han, J. et al. Bioconjugation strategies to couple supramolecular: exo-functionalized palladium cages to peptides for biomedical applications. Chem. Commun. 53, 1405–1408 (2017).Article 
CAS 

Google Scholar 
Cosialls, R. et al. PET imaging of self‐assembled 18F‐labelled Pd2L4 metallacages for anticancer drug delivery. Chem. A Eur. J. 18, e202202604 (2022).
Google Scholar 
d’Orchymont, F. & Holland, J. P. Supramolecular rotaxane-based multi-modal probes for cancer biomarker imaging. Angew. Chemie Int. Ed. 61, e202204072 (2022).Article 

Google Scholar 
d’Orchymont, F. & Holland, J. P. A rotaxane-based platform for tailoring the pharmacokinetics of cancer-targeted radiotracers. Chem. Sci. 13, 12713–12725 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
d’Orchymont, F. & Holland, J. P. Asymmetric rotaxanes as dual-modality supramolecular imaging agents for targeting cancer biomarkers. Commun. Chem. 6, 1–10 (2023).Article 

Google Scholar 
D’Orchymont, F. & Holland, J. P. Cooperative capture synthesis of functionalized heterorotaxanes─chemical scope, kinetics, and mechanistic studies. J. Am. Chem. Soc. 145, 12894–12910 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Fernandes, A. et al. Rotaxane-based propeptides: protection and enzymatic release of a bioactive pentapeptide. Angew. Chemie Int. Ed. 48, 6443–6447 (2009).Article 
CAS 

Google Scholar 
Fernandes, A., Viterisi, A., Aucagne, V., Leigh, D. A. & Papot, S. Second generation specific-enzyme-activated rotaxane propeptides. Chem. Commun. 48, 2083–2085 (2012).Article 
CAS 

Google Scholar 
Barat, R. et al. A mechanically interlocked molecular system programmed for the delivery of an anticancer drug. Chem. Sci. 6, 2608–2613 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saady, A. A. et al. A platform approach to cleavable macrocycles for the controlled disassembly of mechanically caged molecules. Angew. Chemie Int. Ed. 63, e202400344 (2024).Bargh, J. D., Isidro-Llobet, A., Parker, J. S. & Spring, D. R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev. 48, 4361–4374 (2019).Article 
CAS 
PubMed 

Google Scholar 
McCombs, J. R. & Owen, S. C. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J. 17, 339–351 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sasso, J. M. et al. The evolving landscape of antibody-drug conjugates: in depth analysis of recent research progress. Bioconjug. Chem. 34, 1951–2000 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ashman, N. et al. Peroxide-cleavable linkers for antibody-drug conjugates. Chem. Commun. 59, 1841–1844 (2023).Article 
CAS 

Google Scholar 
Chuprakov, S. et al. Tandem-cleavage linkers improve the in vivo stability and tolerability of antibody-drug conjugates. Bioconjug. Chem. 32, 746–754 (2021).Article 
CAS 
PubMed 

Google Scholar 
Axup, J. Y. et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl Acad. Sci. USA 109, 16101–16106 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Burke, P. J. et al. Development of novel quaternary ammonium linkers for antibody-drug conjugates. Mol. Cancer Ther. 15, 938–945 (2016).Article 
CAS 
PubMed 

Google Scholar 
Anami, Y. et al. Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat. Commun. 9, 2512 (2018).Wakisaka, K. et al. A novel radioiodination reagent for protein radiopharmaceuticals with L-lysine as a plasma-stable metabolizable linkage to liberate m-iodohippuric acid after lysosomal proteolysis. J. Med. Chem. 40, 2643–2652 (1997).Article 
CAS 
PubMed 

Google Scholar 
Arano, Y. et al. Assessment of the radiochemical design of antibodies with a metabolizable linkage for target-selective radioactivity delivery. Bioconjug. Chem. 9, 497–506 (1998).Article 
CAS 
PubMed 

Google Scholar 
Arano, Y. et al. Chemical design of radiolabeled antibody fragments for low renal radioactivity levels. Cancer Res. 59, 128–134 (1999).CAS 
PubMed 

Google Scholar 
Fujioka, Y., Arano, Y., Ono, M., Uehara, T. & Ogawa, K. Renal metabolism of 3′-Iodohippuryl N(E)-Maleoyl-L-lysine (HML)-Conjugated fab fragments. Bioconjug. Chem. 12, 178–185 (2001).Article 
CAS 
PubMed 

Google Scholar 
Uehara, T. et al. In vivo recognition of cyclopentadienyltricarbonylrhenium (CpTR) derivatives. Nucl. Med. Biol. 30, 327–334 (2003).Article 
CAS 
PubMed 

Google Scholar 
Fujioka, Y. et al. In vitro system to estimate renal brush border enzyme-mediated cleavage of peptide linkages for designing radiolabeled antibody fragments of low renal radioactivity levels. Bioconjug. Chem. 16, 1610–1616 (2005).Article 
CAS 
PubMed 

Google Scholar 
Uehara, T. et al. Design, synthesis, and evaluation of [188Re]organorhenium- labeled antibody fragments with renal enzyme-cleavable linkage for low renal radioactivity levels. Bioconjug. Chem. 18, 190–198 (2007).Article 
CAS 
PubMed 

Google Scholar 
Akizawa, H., Uehara, T. & Arano, Y. Renal uptake and metabolism of radiopharmaceuticals derived from peptides and proteins. Adv. Drug Deliv. Rev. 60, 1319–1328 (2008).Article 
CAS 
PubMed 

Google Scholar 
Akizawa, H. et al. Renal brush border enzyme-cleavable linkages for low renal radioactivity levels of radiolabeled antibody fragments. Bioconjug. Chem. 24, 291–299 (2013).Article 
CAS 
PubMed 

Google Scholar 
Suzuki, C. et al. Preferential cleavage of a tripeptide linkage by enzymes on renal brush border membrane to reduce renal radioactivity levels of radiolabeled antibody fragments. J. Med. Chem. 61, 5257–5268 (2018).Article 
CAS 
PubMed 

Google Scholar 
Skidgel, R. A. Basic carboxypeptidases: regulators of peptide hormone activity. Trends Pharmacol. Sci. 9, 299–304 (1988).Article 
CAS 
PubMed 

Google Scholar 
Yim et al. Synthesis and preclinical characterization of [64Cu]NODAGA-MAL-exendin-4 with a Nε-maleoyl-l-lysyl-glycine linkage. Nucl. Med. Biol. 40, 1006–1012 (2013).Article 
CAS 
PubMed 

Google Scholar 
Uehara, T., Yokoyama, M., Suzuki, H., Hanaoka, H. & Arano, Y. A gallium-67/68–labeled antibody fragment for immuno-SPECT/PET shows low renal radioactivity without loss of tumor uptake. Clin. Cancer Res. 24, 3309–3316 (2018).Article 
CAS 
PubMed 

Google Scholar 
Li, L. et al. Reduction of kidney uptake in radiometal labeled peptide linkers conjugated to recombinant antibody fragments. Site-specific conjugation of DOTA-peptides to a Cys-diabody. Bioconjug. Chem. 13, 985–995 (2002).Article 
CAS 
PubMed 

Google Scholar 
Zhang, M. et al. Combined probe strategy to increase the enzymatic digestion rate and accelerate the renal radioactivity clearance of peptide radiotracers. Mol. Pharm. 19, 1548–1556 (2022).Article 
CAS 
PubMed 

Google Scholar 
Valpreda, G. et al. Dual MVK cleavable linkers effectively reduce renal retention of 111In-fibronectin-binding peptides. Bioorg. Med. Chem. 73, 117040 (2022).Article 
CAS 
PubMed 

Google Scholar 
Trachsel, B. et al. Reducing kidney uptake of radiolabelled exendin-4 using variants of the renally cleavable linker MVK. EJNMMI Radiopharm. Chem. 8, 21 (2023).Bendre, S. et al. Evaluation of Met-Val-Lys as a renal brush border enzyme-cleavable linker to reduce kidney uptake of 68Ga-Labeled DOTA-conjugated peptides and peptidomimetics. Molecules 25, 1–21 (2020).Article 

Google Scholar 
Murce, E., De Blois, E., Van Den Berg, S., De Jong, M. & Seimbille, Y. Synthesis and radiolabelling of PSMA-targeted derivatives containing GYK/MVK cleavable linkers. R. Soc. Open Sci. 10, 1–12 (2023).Article 

Google Scholar 
Zhang, M. et al. Improving the theranostic potential of exendin 4 by reducing the renal radioactivity through brush border membrane enzyme-mediated degradation. Bioconjug. Chem. 30, 1745–1753 (2019).Article 
PubMed 

Google Scholar 
Zhang, M. et al. Optimization of enzymolysis clearance strategy to enhance renal clearance of radioligands. Bioconjug. Chem. 32, 2108–2116 (2021).Article 
CAS 
PubMed 

Google Scholar 
Vaidyanathan, G. et al. Brush border enzyme-cleavable linkers: evaluation for reducing renal uptake of radiolabeled prostate-specific membrane antigen inhibitors. Nucl. Med. Biol. 62–63, 18–30 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Z., Devoogdt, N., Zalutsky, M. R. & Vaidyanathan, G. An efficient method for labeling single domain antibody fragments with 18F using Tetrazine- trans-cyclooctene ligation and a renal brush border enzyme-cleavable linker. Bioconjug. Chem. 29, 4090–4103 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, M. et al. First-in-human validation of enzymolysis clearance strategy for decreasing renal radioactivity using modified [68Ga]Ga-HER2 Affibody. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-023-06584-8 (2024).Bruns, C. J. & Stoddart, J. F. The nature of the mechanical bond. https://doi.org/10.1002/9781119044123 (2016).Wang, X. & Smithrud, D. B. Pt-rotaxanes as cytotoxic agents. Bioorg. Med. Chem. Lett. 21, 6880–6883 (2011).Article 
CAS 
PubMed 

Google Scholar 
Smithrud, D. B. et al. Ca2+ selective host rotaxane is highly toxic against prostate cancer cells. ACS Med. Chem. Lett. 8, 163–167 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sojka, M. et al. Locked and loaded: Ruthenium(II)-Capped Cucurbit[n]uril-based rotaxanes with antimetastatic properties. Inorg. Chem. 58, 10861–10870 (2019).Article 
CAS 
PubMed 

Google Scholar 
Webber, M. J. & Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 46, 6600–6620 (2017).Article 
CAS 
PubMed 

Google Scholar 
Hannon, M. J. Supramolecular DNA recognition. Chem. Soc. Rev. 36, 280–295 (2007).Article 
CAS 
PubMed 

Google Scholar 
Pairault, N. et al. Rotaxane-based architectures for biological applications. Comptes Rendus Chim. 19, 103–112 (2016).Article 
CAS 

Google Scholar 
Carter, L. M. & Zanzonico, P. B. MIB guides: preclinical radiopharmaceutical dosimetry. Mol. Imaging Biol. 26, 17–28 (2024).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles