Ultrasensitive optical detection of strontium ions by specific nanosensor with ultrahigh binding affinity

Hill, D. J. Nuclear energy for the future. Nat. Mater. 7, 680–682 (2008).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Marcus, G. H. Nuclear power around the world. Nat. Rev. Phys. 1, 172–173 (2019).Article 

Google Scholar 
Nogrady, B. Is Fukushima wastewater release safe? What the science says. Nature 618, 894–895 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Smith, J., Marks, N. & Irwin, T. The risks of radioactive wastewater release. Science 382, 31–33 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ye, Y. et al. Spontaneous electrochemical uranium extraction from wastewater with net electrical energy production. Nat. Water 1, 887–898 (2023).Article 

Google Scholar 
Feng, L. et al. Ultrasensitive and highly selective detection of strontium ions. Nat. Sustain. 6, 789–796 (2023).Article 

Google Scholar 
Yuan, Y. et al. Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat. Sustain. 4, 708–714 (2021).Article 

Google Scholar 
Zhang, H. et al. Ultrafiltration separation of Am(VI)-polyoxometalate from lanthanides. Nature 616, 482–487 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garai, M. & Yavuz, C. T. Radioactive strontium removal from seawater by a MOF via two-step ion exchange. Chem 5, 750–752 (2019).Article 
CAS 

Google Scholar 
Zhang, S. et al. Confining Ti-oxo clusters in covalent organic framework micropores for photocatalytic reduction of the dominant uranium species in seawater. Chem 9, 3172–3184 (2023).Article 
CAS 

Google Scholar 
Feng, T. et al. Ultrasensitive detection of aqueous uranyl based on uranyl‐triggered protein photocleavage. Angew. Chem. Int. Ed. 61, e202115886 (2022).Article 
CAS 

Google Scholar 
Feng, T. et al. Ultrasensitive and highly specific detection of iodine ions using zirconium (IV)-enhanced oxidation. Cell Rep. Phys. Sci. 3, 101143 (2022).Article 
CAS 

Google Scholar 
Dong, X. et al. Fluorescence and electrochemical detection of iodine vapor in the presence of high humidity using Ln-based MOFs. Dalton Trans. 50, 15567–15575 (2021).Article 
CAS 
PubMed 

Google Scholar 
Small, L. J. et al. Reversible MOF-based sensors for the electrical detection of iodine gas. ACS Appl. Mater. Interfaces 11, 27982–27988 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sahoo, S. K. et al. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant. Sci. Rep. 6, 23925 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wakaki, S. et al. A part per trillion isotope ratio analysis of (90)Sr/(88)Sr using energy-filtered thermal ionization mass spectrometry. Sci. Rep. 12, 9528 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krouglov, S. V., Filipas, A. S., Alexakhin, R. M. & Arkhipov, N. P. Long-term study on the transfer of 137Cs and 90Sr from Chernobyl-contaminated soils to grain crops. J. Environ. Radioact. 34, 267–286 (1997).Article 
CAS 

Google Scholar 
Krouglov, S. V., Kurinov, A. D. & Alexakhin, R. M. Chemical fractionation of 90Sr, 106Ru, 137Cs and 144Ce in Chernobyl-contaminated soils: an evolution in the course of time. J. Environ. Radioact. 38, 59–76 (1998).Article 
CAS 

Google Scholar 
Bugai, D., Kireev, S., Hoque, M. A., Kubko, Y. & Smith, J. Natural attenuation processes control groundwater contamination in the Chernobyl exclusion zone: evidence from 35 years of radiological monitoring. Sci. Rep. 12, 18215 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ponsford, M. Research in Chornobyl zone restarts amid ravages of war. Nature 624, 244–246 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Bisseling, T. & Geurts, R. Opening the floodgates at Fukushima. Science 369, 620–621 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sauer, K. et al. Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption. Nat. Commun. 13, 7829 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luning, K. G., Frolen, H., Nelson, A. & Ronnback, C. Genetic effects of strontium-90 injected into male mice. Nature 197, 304–305 (1963).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Piette, M., Desmet, B. & Dams, R. Determination of strontium in human whole blood by ICP-AES. Sci. Total. Environ. 141, 269–273 (1994).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Bings, N. H., Bogaerts, A. & Broekaert, J. A. Atomic spectroscopy. Anal. Chem. 76, 3313–3336 (2004).Article 
CAS 
PubMed 

Google Scholar 
Pejovic-Milic, A., Stronach, I. M., Gyorffy, J., Webber, C. E. & Chettle, D. R. Quantification of bone strontium levels in humans by in vivo x-ray fluorescence. Med. Phys. 31, 528–538 (2004).Article 
CAS 
PubMed 

Google Scholar 
Attiyat, A. S., Christian, G. D., Cason, C. V. & Bartsch, R. A. Benzo-18-crown-6 and its lariat ether derivatives as ionophores for potassium, strontium, and lead ion-selective electrodes. Electroanalysis 4, 51–56 (1992).Article 
CAS 

Google Scholar 
Baumann, E. W. Preparation and properties of a strontium-selective electrode. Anal. Chem. 47, 959–961 (1975).Article 
CAS 

Google Scholar 
Singh, A. K., Saxena, P., Mehtab, S. & Gupta, B. Strontium(II)-selective electrode based on a macrocyclic tetraamide. Talanta 69, 521–526 (2006).Article 
CAS 
PubMed 

Google Scholar 
Kaur, S., Kaur, A., Kaur, N. & Singh, N. Development of chemosensor for Sr2+ using organic nanoparticles: application of sensor in product analysis for oral care. Org. Biomol. Chem. 12, 8230–8238 (2014).Article 
CAS 
PubMed 

Google Scholar 
Kaur, A., Kaur, G., Singh, A., Singh, N. & Kaur, N. Polyamine based ratiometric fluorescent chemosensor for strontium metal ion in aqueous medium: application in tap water, river water, and in oral care. ACS Sustain. Chem. Eng. 4, 94–101 (2015).Article 

Google Scholar 
Qu, K., Zhao, C., Ren, J. & Qu, X. Human telomeric G-quadruplex formation and highly selective fluorescence detection of toxic strontium ions. Mol. Biosyst. 8, 779–782 (2012).Article 
CAS 
PubMed 

Google Scholar 
Leung, K.-H. et al. A highly selective G-quadruplex-based luminescent switch-on probe for the detection of nanomolar strontium(ii) ions in sea water. RSC Adv. 2, 8273 (2012).Article 
ADS 
CAS 

Google Scholar 
Buhlmann, P., Pretsch, E. & Bakker, E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 98, 1593–1688 (1998).Article 
PubMed 

Google Scholar 
Du, X. et al. A plasticizer-free miniaturized optical ion sensing platform with ionophores and silicon-based particles. Anal. Chem. 90, 5818–5824 (2018).Article 
CAS 
PubMed 

Google Scholar 
Du, X. & Xie, X. Non-equilibrium diffusion controlled ion-selective optical sensor for blood potassium determination. ACS Sens. 2, 1410–1414 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wang, R., Du, X., Zhai, J. & Xie, X. Distance and color change based hydrogel sensor for visual quantitative determination of buffer concentrations. ACS Sens. 4, 1017–1022 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, X. et al. Ionophore-based biphasic chemical sensing in droplet microfluidics. Angew. Chem. Int. Ed. 58, 8092–8096 (2019).Article 
CAS 

Google Scholar 
Du, X. & Xie, X. Ion-selective optodes: alternative approaches for simplified fabrication and signaling. Sens. Actuators B Chem. 335, 129368 (2021).Article 
CAS 

Google Scholar 
Wang, X. et al. An ionophore-based anion-selective optode printed on cellulose paper. Angew. Chem. Int. Ed. 56, 11826–11830 (2017).Article 
ADS 
CAS 

Google Scholar 
Xie, X., Crespo, G. A., Mistlberger, G. & Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 6, 202–207 (2014).Article 
CAS 
PubMed 

Google Scholar 
Shamsipur, M., Rouhani, S., Sharghi, H., Ganjali, M. R. & Eshghi, H. Strontium-selective membrane electrodes based on some recently synthesized benzo-substituted macrocyclic diamides. Anal. Chem. 71, 4938–4943 (1999).Article 
CAS 
PubMed 

Google Scholar 
Zanjanchi, M. A., Arvand, M., Mahmoodi, N. O. & Islamnezhad, A. A fast response strontium ion‐selective electrode prepared by sol‐gel membrane technique. Electroanalysis 21, 1816–1821 (2009).Article 
CAS 

Google Scholar 
Du, X., Wang, R., Zhai, J., Li, X. & Xie, X. Ionophore-based ion-selective nanosensors from brush block copolymer nanodots. ACS Appl. Nano. Mater. 3, 782–788 (2019).Article 

Google Scholar 
Du, X., Wang, R., Zhai, J. & Xie, X. Surface PEGylation of ionophore-based microspheres enables determination of serum sodium and potassium ion concentration under flow cytometry. Anal. Bioanal. Chem. 415, 4233–4243 (2022).Article 
PubMed 

Google Scholar 
Qin, T. et al. A flavonoid-based fluorescent test strip for sensitive and selective detection of a gaseous nerve agent simulant. Anal. Chim. Acta. 1076, 125–130 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zhai, J., Xie, X., Cherubini, T. & Bakker, E. Ionophore-based titrimetric detection of alkali metal ions in serum. ACS Sens. 2, 606–612 (2017).Article 
CAS 
PubMed 

Google Scholar 
Izatt, R. M., Rytting, J. H., Nelson, D. P., Haymore, B. L. & Christensen, J. J. Binding of alkali metal ions by cyclic polyethers: significance in ion transport processes. Science 164, 443–444 (1969).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Frensdorff, H. K. Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc. 93, 600–606 (2002).Article 

Google Scholar 
Xie, X. & Bakker, E. Determination of effective stability constants of ion-carrier complexes in ion selective nanospheres with charged solvatochromic dyes. Anal. Chem. 87, 11587–11591 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ansarifard, M. & Rounaghi, G. A thermodynamic study between 18-Crown-6 with Mg2+, Ca2+, Sr2+and Ba2+ cations in water-methanol and water-ethanol binary mixtures using the conductometric method. J. Incl. Phenom. Macrocycl. Chem. 52, 39–44 (2005).Article 
CAS 

Google Scholar 
Lamb, J. D., Izatt, R. M., Swain, C. S. & Christensen, J. J. A systematic study of the effect of macrocycle ring size and donor atom type on the log K,.DELTA.H, and T.DELTA.S of reactions at 25.degree.C in methanol of mono- and divalent cations with crown ethers. J. Am. Chem. Soc 102, 475–479 (2002).Article 

Google Scholar 
Funke, H., Scheinost, A. C. & Chukalina, M. Wavelet analysis of extended x-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005).Article 
ADS 

Google Scholar 
Funke, H., Chukalina, M. & Scheinost, A. C. A new FEFF-based wavelet for EXAFS data analysis. J. Synchrotron. Radiat. 14, 426–432 (2007).Article 
CAS 
PubMed 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).Article 
CAS 

Google Scholar 
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter. 54, 11169–11186 (1996).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lawrence, J. et al. Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding. Nat. Commun. 11, 2103 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhu, T. et al. Thermal multiferroics in all-inorganic quasi-two-dimensional halide perovskites. Nat. Mater. 23, 182–188 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).Article 
ADS 
CAS 

Google Scholar 
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B Condens. Matter. 50, 17953–17979 (1994).Article 
ADS 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles