Association of GATA3 expression in triple-positive breast cancer with overall survival and immune cell infiltration

Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U. S. A. 98, 10869–10874 (2001).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Elsers, D. A., Masoud, E. M., Kamel, N. A. M. H. & Ahmed, A. M. Immunohistochemical signaling pathways of triple negative and triple positive breast cancers: What is new?. Ann. Diagn. Pathol. 55, 151831 (2021).Article 
PubMed 

Google Scholar 
Geng, A., Xiao, J., Dong, B. & Yuan, S. Analysis of prognostic factors and construction of prognostic models for triple-positive breast cancer. Front. Oncol. 13, 1071076 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Arciero, C. A. et al. ER+/HER2+breast cancer has different metastatic patterns and better survival than ER-/HER2+ breast cancer. Clin. Breast Cancer 19, 236–245 (2019).Article 
PubMed 

Google Scholar 
Geyer, F. C., Rodrigues, D. N., Weigelt, B. & Reis-Filho, J. S. Molecular classification of estrogen receptor-positive/luminal breast cancers. Adv. Anat. Pathol. 19, 39–53 (2012).Article 
CAS 
PubMed 

Google Scholar 
Dieci, M. V. et al. Neoadjuvant Chemotherapy and Immunotherapy in Luminal B-like Breast Cancer: Results of the phase II GIADA Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 28, 308–317 (2022).Kouros-Mehr, H., Kim, J., Bechis, S. K. & Werb, Z. GATA-3 and the regulation of the mammary luminal cell fate. Curr. Opin. Cell Biol. 20, 164–170 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Van de Walle, I. et al. GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate. Nat. Commun. 7, 11171 (2016).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Bc, M. et al. GATA3 expression in advanced breast cancer: prognostic value and organ-specific relapse. Am. J. Clin. Pathol. (2015).Jacquemier, J. et al. Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer. Breast Cancer Res. BCR 11, R23 (2009).Article 
PubMed 

Google Scholar 
Denkert, C. et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 19, 40–50 (2018).Article 
PubMed 

Google Scholar 
Zhang, Q. et al. GATA3 predicts the tumor microenvironment phenotypes and molecular subtypes for bladder carcinoma. Front. Surg. 9, 860663 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Colaprico, A. et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016).Article 
PubMed 

Google Scholar 
Silva, T. C. et al. TCGA workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages. F1000Research 5, 1542 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Mounir, M. et al. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLoS Comput. Biol. 15, e1006701 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Allison, K. H. et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 38, 1346–1366 (2020).Article 

Google Scholar 
Park, Y. H. et al. Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat. Commun. 11, 6175 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data Innov. Camb. Mass 2, 100141 (2021).CAS 

Google Scholar 
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinf. 14, 7 (2013).Article 

Google Scholar 
Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013).Article 
ADS 
PubMed 

Google Scholar 
Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).Article 
CAS 
PubMed 

Google Scholar 
Maeser, D., Gruener, R. F. & Huang, R. S. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 22, bbab260 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, S. et al. Expression patterns of GATA3 and the androgen receptor are strongly correlated in patients with triple-negative breast cancer. Hum. Pathol. 55, 190–195 (2016).Article 
CAS 
PubMed 

Google Scholar 
Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an international TILs working group 2014. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 26, 259–271 (2015).Article 
CAS 

Google Scholar 
Kay, C. et al. Current trends in the treatment of HR+/HER2+ breast cancer. Future Oncol. Lond. Engl. 17, 1665–1681 (2021).Article 
CAS 

Google Scholar 
Giuliano, M., Trivedi, M. V. & Schiff, R. Bidirectional crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer: Molecular basis and clinical implications. Breast Care Basel Switz. 8, 256–262 (2013).Article 

Google Scholar 
Guarneri, V. et al. PIK3CA mutation in the ShortHER randomized adjuvant trial for patients with early HER2+breast cancer: Association with prognosis and integration with PAM50 subtype. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 26, 5843–5851 (2020).Yagi, R., Zhu, J. & Paul, W. E. An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int. Immunol. 23, 415–420 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fararjeh, A.-F.S. et al. The impact of the effectiveness of GATA3 as a prognostic factor in breast cancer. Hum. Pathol. 80, 219–230 (2018).Article 
CAS 
PubMed 

Google Scholar 
Querzoli, P. et al. GATA3 as an adjunct prognostic factor in breast cancer patients with less aggressive disease: A study with a review of the literature. Diagnostics. (2021).Inoue, S. et al. GATA3 immunohistochemistry in urothelial carcinoma of the upper urinary tract as a urothelial marker and a prognosticator. Hum. Pathol. 64, 83–90 (2017).Article 
CAS 
PubMed 

Google Scholar 
Chen, H. J. et al. GATA3 as a master regulator and therapeutic target in ovarian high-grade serous carcinoma stem cells: GSKJ4 targeting GATA3/UTX interaction eliminate HGSC stem cells. Int. J. Cancer 143, 3106–3119 (2018).Article 
CAS 
PubMed 

Google Scholar 
Jiang, M. et al. Alterations of DNA damage response pathway: Biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharm. Sin. B 11, 2983–2994 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cheng, A. S. et al. Mismatch repair protein loss in breast cancer: clinicopathological associations in a large British Columbia cohort. Breast Cancer Res. Treat. 179, 3–10 (2020).Article 
CAS 
PubMed 

Google Scholar 
de Melo Gagliato, D., Buzaid, A. C., Perez-Garcia, J. & Cortes, J. Immunotherapy in breast cancer: Current practice and clinical challenges. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 34, 611–623 (2020).
Google Scholar 
Xiao, Y. & Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 221, 107753 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mao, X. et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer 20, 131 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dieci, M. V. et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 26, 1698–1704 (2015).Article 
CAS 

Google Scholar 
Mao, Y. et al. The prognostic value of tumor-infiltrating lymphocytes in breast cancer: A systematic review and meta-analysis. PloS One 11, e0152500 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Niu, N. et al. A multicentre single arm phase 2 trial of neoadjuvant pyrotinib and letrozole plus dalpiciclib for triple-positive breast cancer. Nat. Commun. 13, 7043 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goldberg, J. et al. Estrogen receptor mutations as novel targets for immunotherapy in metastatic estrogen receptor-positive breast cancer. Cancer Res. Commun. 4, 496–504 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, S. et al. B-cell-mediated immunity predicts survival of patients with estrogen receptor-positive breast cancer. JCO Precis. Oncol. 8, e2300263 (2024).Article 
PubMed 

Google Scholar 
Barzaman, K. et al. Breast cancer immunotherapy: Current and novel approaches. Int. Immunopharmacol. 98, 107886 (2021).Article 
CAS 
PubMed 

Google Scholar 
Li, C. J., Lin, L. T., Hou, M. F. & Chu, P. Y. PD-L1/PD-1 blockade in breast cancer: The immunotherapy era (Review). Oncol. Rep. 45, 5–12 (2021).Article 
PubMed 

Google Scholar 
Kitano, A. et al. Tumour-infiltrating lymphocytes are correlated with higher expression levels of PD-1 and PD-L1 in early breast cancer. ESMO Open 2, e000150 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Wimberly, H. et al. PD-L1 expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol. Res. 3, 326–332 (2015).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles