Ultrastable cathodes enabled by compositional and structural dual-gradient design

Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).Article 

Google Scholar 
Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium‐ion batteries. Adv. Mater. 30, 1800561 (2018).Article 

Google Scholar 
Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).Article 

Google Scholar 
Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016).Article 

Google Scholar 
Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).Article 

Google Scholar 
Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).Article 

Google Scholar 
Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).Article 

Google Scholar 
Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).Article 

Google Scholar 
Liu, T. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotech. 14, 50–56 (2019).Article 

Google Scholar 
Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).Article 

Google Scholar 
Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).Article 

Google Scholar 
Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).Article 

Google Scholar 
Thackeray, M. M. & Amine, K. Layered Li–Ni–Mn–Co oxide cathodes. Nat. Energy 6, 933 (2021).Article 

Google Scholar 
Wang, L., Liu, T., Wu, T. & Lu, J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611, 61–67 (2022).Article 

Google Scholar 
Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).Article 

Google Scholar 
Liu, T. et al. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat. Commun. 12, 6024 (2021).Article 

Google Scholar 
Lin, F. et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries. Nat. Energy 1, 1–8 (2016).Article 

Google Scholar 
Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021).Article 

Google Scholar 
Gao, H. et al. Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode. Chem. Mater. 31, 2723–2730 (2019).Article 

Google Scholar 
Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).Article 

Google Scholar 
Clément, R., Lun, Z. & Ceder, G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy Environ. Sci. 13, 345–373 (2020).Article 

Google Scholar 
Huang, J. et al. Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nat. Energy 6, 706–714 (2021).Article 

Google Scholar 
Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).Article 

Google Scholar 
Zhao, W. et al. High voltage operation of Ni‐rich NMC cathodes enabled by stable electrode/electrolyte interphases. Adv. Energy Mater. 8, 1800297 (2018).Article 

Google Scholar 
Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).Article 

Google Scholar 
Tan, S. et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 7, 484–494 (2022).Article 

Google Scholar 
Xu, J. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature https://doi.org/10.1038/s41586-022-05627-8 (2023).Cheng, X. et al. Real-time observation of chemomechanical breakdown in a layered nickel-rich oxide cathode realized by in situ scanning electron microscopy. ACS Energy Lett. 6, 1703–1710 (2021).Article 

Google Scholar 
Heenan, T. M. et al. Identifying the origins of microstructural defects such as cracking within Ni‐rich NMC811 cathode particles for lithium‐ion batteries. Adv. Energy Mater. 10, 2002655 (2020).Article 

Google Scholar 
Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).Article 

Google Scholar 
Sun, Y.-K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).Article 

Google Scholar 
Wang, L. et al. Regulation of surface defect chemistry toward stable Ni‐rich cathodes. Adv. Mater. 34, 2200744 (2022).Article 

Google Scholar 
Satish, R. et al. Exposure history and its effect towards stabilizing Li exchange across disordered rock salt interfaces. Chem. Electro Chem. 8, 3982–3991 (2021).
Google Scholar 
Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).Article 

Google Scholar 
Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361 (2017).Article 

Google Scholar 
Xiao, B. & Sun, X. Surface and subsurface reactions of lithium transition metal oxide cathode materials: an overview of the fundamental origins and remedying approaches. Adv. Energy Mater. 8, 1802057 (2018).Article 

Google Scholar 
Qiao, R. et al. Transition-metal redox evolution in LiNi0.5Mn0.3Co0.2O2 electrodes at high potentials. J. Power Sources 360, 294–300 (2017).Article 

Google Scholar 
Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).Article 

Google Scholar 
Sun, H. H. et al. Beyond doping and coating: prospective strategies for stable high-capacity layered Ni-rich cathodes. ACS Energy Lett. 5, 1136–1146 (2020).Article 

Google Scholar 
Li, J. et al. Dynamics of particle network in composite battery cathodes. Science 376, 517–521 (2022).Article 

Google Scholar 

Hot Topics

Related Articles