Increased trial-to-trial similarity and reduced temporal overlap of muscle synergy activation coefficients manifest during learning and with increasing movement proficiency

Bizzi, E., Tresch, M. C. & Saltiel, P. The construction of movement by the spinal cord. Nat. Neurosci. 2, 167. https://doi.org/10.1038/5721 (1999).Article 

Google Scholar 
d’Avella, A. & Bizzi, E. Shared and specific muscle synergies in natural motor behaviors. Proc. Natl. Acad. Sci. USA 102, 3081. https://doi.org/10.1073/pnas.0500199102 (2005).Article 
ADS 
CAS 

Google Scholar 
Bizzi, E. & Cheung, V. C. K. The neural origin of muscle synergies. Front. Comput. Neurosci. 7, 6. https://doi.org/10.3389/fncom.2013.00051 (2013).Article 

Google Scholar 
Profeta, V. L. S. & Turvey, M. T. Bernstein’s levels of movement construction: A contemporary perspective. Hum. Mov. Sci. 57, 133. https://doi.org/10.1016/j.humov.2017.11.013 (2018).Article 

Google Scholar 
Bernstein, N. The Coordination and Regulation of Movements (Perganmon Press, 1967).
Google Scholar 
Nazifi, M. M., Yoon, H. U., Beschorner, K. & Hur, P. Shared and task-specific muscle synergies during normal walking and slipping. Front. Hum. Neurosci. 11, 40. https://doi.org/10.3389/fnhum.2017.00040 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Barroso, F. O. et al. Shared muscle synergies in human walking and cycling. J. Neurophysiol. 112, 1998. https://doi.org/10.1152/jn.00220.2014 (2014).Article 

Google Scholar 
Allen, J. L., Carey, H. D., Ting, L. H. & Sawers, A. Generalization of motor module recruitment across standing reactive balance and walking is associated with beam walking performance in young adults. Gait Posture 82, 247. https://doi.org/10.1016/j.gaitpost.2020.09.016 (2020).Article 

Google Scholar 
Chvatal, S. A., Torres-Oviedo, G., Safavynia, S. A. & Ting, L. H. Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors. J. Neurophysiol. 106, 1015. https://doi.org/10.1152/jn.00549.2010 (2011).Article 

Google Scholar 
Hug, F., Turpin, N. A., Couturier, A. & Dorel, S. “Consistency of muscle synergies during pedaling across different mechanical constraints,” (in eng). J. Neurophysiol. 106(1), 91–103. https://doi.org/10.1152/jn.01096.2010 (2011).Article 
PubMed 

Google Scholar 
Turpin, N. A., Costes, A., Moretto, P. & Watier, B. Can muscle coordination explain the advantage of using the standing position during intense cycling?. J. Sci. Med. Sport 20, 616. https://doi.org/10.1016/j.jsams.2016.10.019 (2017).Article 

Google Scholar 
Oliveira, A. S., Gizzi, L., Ketabi, S., Farina, D. & Kersting, U. G. Modular control of treadmill vs overground running. PLoS One 11, e0153307. https://doi.org/10.1371/journal.pone.0153307 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hart, C. B. & Giszter, S. F. A neural basis for motor primitives in the spinal cord. J. Neurosci. 30(4), 1322–1336. https://doi.org/10.1523/jneurosci.5894-08.2010 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Takei, T., Confais, J., Tomatsu, S., Oya, T. & Seki, K. Neural basis for hand muscle synergies in the primate spinal cord. Proc. Natl. Acad. Sci. 114(32), 8643–8648. https://doi.org/10.1073/pnas.1704328114 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saltiel, P., Wyler-Duda, K., D’Avella, A., Tresch, M. C. & Bizzi, E. “Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog,” (in eng). J. Neurophysiol. 85(2), 605–619. https://doi.org/10.1152/jn.2001.85.2.605 (2001).Article 
CAS 
PubMed 

Google Scholar 
Steele, K. M., Rozumalski, A. & Schwartz, M. H. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy. Dev. Med. Child Neurol. 57, 1182. https://doi.org/10.1111/dmcn.12826 (2015).Article 

Google Scholar 
Shuman, B. R., Schwartz, M. H. & Steele, K. M. “Electromyography data processing impacts muscle synergies during gait for unimpaired children and children with cerebral palsy,” (in English). Front. Comput. Neurosci. https://doi.org/10.3389/fncom.2017.00050 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Van Criekinge, T. et al. Lower limb muscle synergies during walking after stroke: A systematic review. Disability Rehabilit. 42(20), 2836–2845. https://doi.org/10.1080/09638288.2019.1578421 (2020).Article 

Google Scholar 
Clark, D. J., Ting, L. H., Zajac, F. E., Neptune, R. R. & Kautz, S. A. A. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 103, 857. https://doi.org/10.1152/jn.00825.2009 (2010).Article 

Google Scholar 
da Silva Costa, A. A., Moraes, R., Hortobágyi, T. & Sawers, A. Older adults reduce the complexity and efficiency of neuromuscular control to preserve walking balance. Exp. Gerontol. 140, 111050. https://doi.org/10.1016/j.exger.2020.111050 (2020).Article 
PubMed 

Google Scholar 
Clark, D. J., Ting, L. H., Zajac, F. E., Neptune, R. R. & Kautz, S. A. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 103, 857. https://doi.org/10.1152/jn.00825.2009 (2010).Article 

Google Scholar 
Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 303. https://doi.org/10.1038/nrn2258 (2008).Article 
CAS 

Google Scholar 
Dhawale, A. K., Smith, M. A. & Ölveczky, B. P. The role of variability in motor learning. Annu. Rev. Neurosci. 40, 498. https://doi.org/10.1146/annurev-neuro-072116-031548 (2017).Article 
CAS 

Google Scholar 
Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P. & Smith, M. A. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat. Neurosci. 17, 321. https://doi.org/10.1038/nn.3616 (2014).Article 
CAS 

Google Scholar 
Cardis, M., Casadio, M. & Ranganathan, R. High variability impairs motor learning regardless of whether it affects task performance. J. Neurophysiol. 119, 48. https://doi.org/10.1152/jn.00158.2017 (2018).Article 

Google Scholar 
Levy-Tzedek, S. Motor errors lead to enhanced performance in older adults. Sci. Rep. 7, 8. https://doi.org/10.1038/s41598-017-03430-4 (2017).Article 
CAS 

Google Scholar 
L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey,” arXiv.org, 1996.Sylos-Labini, F. et al. Complexity of modular neuromuscular control increases and variability decreases during human locomotor development. Commun. Biol. 5(1), 1256. https://doi.org/10.1038/s42003-022-04225-8 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Dominici, N. et al. “Locomotor primitives in newborn babies and their development,” (in eng). Science 334(6058), 997–999. https://doi.org/10.1126/science.1210617 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Cheung, V. C. K., Zheng, X.-C., Cheung, R. T. H. & Chan, R. H. M. Modulating the structure of motor variability for skill learning through specific muscle synergies in elderlies and young adults. IEEE Open. J. Eng. Med. Biol. 1, 40. https://doi.org/10.1109/OJEMB.2019.2963666 (2020).Article 

Google Scholar 
Sawers, A., Allen, J. L. & Ting, L. H. Long-term training modifies the modular structure and organization of walking balance control. J. Neurophysiol. 114, 3373. https://doi.org/10.1152/jn.00758.2015 (2015).Article 
CAS 

Google Scholar 
Allen, J. L., McKay, J. L., Sawers, A., Hackney, M. E. & Ting, L. H. Increased neuromuscular consistency in gait and balance after partnered, dance-based rehabilitation in parkinson’s disease. J. Neurophysiol. 118, 373. https://doi.org/10.1152/jn.00813.2016 (2017).Article 

Google Scholar 
Zhao, K., Zhang, Z., Wen, H. & Scano, A. Intra-subject and inter-subject movement variability quantified with muscle synergies in upper-limb reaching movements. Biomimetics (Basel, Switzerland). https://doi.org/10.3390/biomimetics6040063 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Scano, A. et al. A Comprehensive spatial mapping of muscle synergies in highly variable upper-limb movements of healthy subjects. Front. Physiol. https://doi.org/10.3389/fphys.2019.01231 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Pale, U., Atzori, M., Müller, H. & Scano, A. Variability of muscle synergies in hand grasps: Analysis of intra-and inter-session data. Sensors (Basel). https://doi.org/10.3390/s20154297 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Hug, F. Can muscle coordination be precisely studied by surface electromyography?. J. Electromyogr. Kinesiol. 21, 12. https://doi.org/10.1016/j.jelekin.2010.08.009 (2011).Article 

Google Scholar 
Kristiansen, M., Samani, A., Madeleine, P. & Hansen, E. A. Muscle synergies during bench press are reliable across days. J. Electromyogr. Kinesiol. 30, 88. https://doi.org/10.1016/j.jelekin.2016.06.004 (2016).Article 

Google Scholar 
Berger, D. J., Gentner, R., Edmunds, T., Pai, D. K. & d’Avella, A. “Differences in adaptation rates after virtual surgeries provide direct evidence for modularity,” (in eng). J. Neurosci. 33(30), 12384–12394. https://doi.org/10.1523/jneurosci.0122-13.2013 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berger, D. J., Borzelli, D. & d’Avella, A. Task space exploration improves adaptation after incompatible virtual surgeries. J. Neurophysiol. 127(4), 1127–1146. https://doi.org/10.1152/jn.00356.2021 (2022).Article 
PubMed 

Google Scholar 
Berger, D. J. & d’Avella, A. “Persistent changes in motor adaptation strategies after perturbations that require exploration of novel muscle activation patterns,” (in eng). J. Neurophysiol. 130(5), 1194–1199. https://doi.org/10.1152/jn.00154.2023 (2023).Article 
PubMed 

Google Scholar 
Oliveira, A. S., Gizzi, L., Farina, D. & Kersting, U. G. “Motor modules of human locomotion: Influence of EMG averaging, concatenation, and number of step cycles,” (in English). Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2014.00335 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Ghislieri, M., Lanotte, M., Knaflitz, M., Rizzi, L. & Agostini, V. Muscle synergies in Parkinson’s disease before and after the deep brain stimulation of the bilateral subthalamic nucleus. Sci. Rep. 13, 6997. https://doi.org/10.1038/s41598-023-34151-6 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huebner, A., Faenger, B., Scholle, H.-C. & Anders, C. Re-evaluation of the amplitude–force relationship of trunk muscles. J. Biomech. 48, 1205. https://doi.org/10.1016/j.jbiomech.2015.02.016 (2015).Article 

Google Scholar 
Vera-Garcia, F. J., Moreside, J. M. & McGill, S. M. MVC techniques to normalize trunk muscle EMG in healthy women. J. Electromyogr. Kinesiol. 20, 16. https://doi.org/10.1016/j.jelekin.2009.03.010 (2009).Article 

Google Scholar 
Oshikawa, T., Adachi, G., Akuzawa, H., Okubo, Y. & Kaneoka, K. Electromyographic analysis of abdominal muscles during abdominal bracing and hollowing among six different positions. JPFSM 9, 163. https://doi.org/10.7600/jpfsm.9.157 (2020).Article 

Google Scholar 
Kadaba, M. P., Ramakrishnan, H. K. & Wootten, M. E. “Measurement of lower extremity kinematics during level walking,” (in eng). J. Orthop. Res. 8(3), 383–392. https://doi.org/10.1002/jor.1100080310 (1990).Article 
CAS 
PubMed 

Google Scholar 
Paterson, K. L., Hinman, R. S., Metcalf, B. R., Bennell, K. L. & Wrigley, T. V. Plug-in-Gait calculation of the knee adduction moment in people with knee osteoarthritis during shod walking: Comparison of two different foot marker models. J. Foot Ankle Res. 10, 8. https://doi.org/10.1186/s13047-017-0187-4 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. “GNU Octave version 6.2.0 manual: a high-level interactive language for numerical computations.” https://www.gnu.org/software/octave/doc/v6.2.0/Potvin, J. R. & Brown, S. H. M. Less is more: high pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based biceps brachii muscle force estimates. J. Electromyogr. Kinesiol. 14, 399. https://doi.org/10.1016/j.jelekin.2003.10.005 (2004).Article 

Google Scholar 
Hug, F., Turpin, N. A., Dorel, S. & Guével, A. Smoothing of electromyographic signals can influence the number of extracted muscle synergie. Clin. Neurophysiol. 123, 1896. https://doi.org/10.1016/j.clinph.2012.01.015 (2012).Article 

Google Scholar 
van der Krogt, M. et al. The effect of EMG processing choices on muscle synergies before and after BoNT-A treatment in cerebral palsy. Gait Posture 49, 31. https://doi.org/10.1016/j.gaitpost.2016.07.095 (2016).Article 

Google Scholar 
van den Hoorn, W., van Dieen, J. H., Hodges, P. W. & Hug, F. Effect of acute noxious stimulation to the leg or back on muscle synergies during walking. J. Neurophysiol. 113, 54. https://doi.org/10.1152/jn.00557.2014 (2015).Article 

Google Scholar 
Boccia, G., Zoppirolli, C., Bortolan, L., Schena, F. & Pellegrini, B. Shared and task-specific muscle synergies of Nordic walking and conventional walking. Scand. J. Med. Sci. Sports 28, 918. https://doi.org/10.1111/sms.12992 (2018).Article 

Google Scholar 
Kim, Y., Bulea, T. C. & Damiano, D. L. Novel methods to enhance precision and reliability in muscle synergy identification during walking. Front. Hum. Neurosci. 10, 455. https://doi.org/10.3389/fnhum.2016.00455 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Ballarini, R., Ghislieri, M., Knaflitz, M. & Agostini, V. An algorithm for choosing the optimal number of muscle synergies during walking. Sensors (Basel, Switzerland). https://doi.org/10.3390/s21103311 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Rabbi, M. F. et al. Non-negative matrix factorisation is the most appropriate method for extraction of muscle synergies in walking and running. Sci. Rep. 10, 8266. https://doi.org/10.1038/s41598-020-65257-w (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roh, J., Rymer, W. Z., Perreault, E. J., Yoo, S. B. & Beer, R. F. Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 109, 781. https://doi.org/10.1152/jn.00670.2012 (2013).Article 

Google Scholar 
Turpin, N. A., Uriac, S. & Dalleau, G. How to improve the muscle synergy analysis methodology?. Eur. J. Appl. Physiol. 121, 1025. https://doi.org/10.1007/s00421-021-04604-9 (2021).Article 

Google Scholar 
L. Frey Law, C. Krishnan, and K. Avin. Modeling nonlinear errors in surface electromyography due to baseline noise: A new methodology. J. Biomech. 44, 205 (2010). https://doi.org/10.1016/j.jbiomech.2010.09.008.S. Hiep Vu Nguyen, I. Nambu, and Y. Wada, “The adjustment of muscle synergy recruitment by controlling muscle contraction during the reaching movement,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 9–12 Oct. 2016 2016, pp. 000756–000761, https://doi.org/10.1109/SMC.2016.7844332.Bianco, N. A., Patten, C. & Fregly, B. J. Can measured synergy excitations accurately construct unmeasured muscle excitations? (in eng). J. Biomech. Eng. https://doi.org/10.1115/1.4038199 (2018).Article 
PubMed 

Google Scholar 
Santuz, A., Ekizos, A., Janshen, L., Baltzopoulos, V. & Arampatzis, A. “On the methodological implications of extracting muscle synergies from human locomotion,” (in eng). Int. J. Neural Syst. 27(5), 1750007. https://doi.org/10.1142/S0129065717500071 (2017).Article 
PubMed 

Google Scholar 
Hagio, S., Fukuda, M. & Kouzaki, M. Identification of muscle synergies associated with gait transition in humans. Front. Hum. Neurosci. 9, 48. https://doi.org/10.3389/fnhum.2015.00048 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
J. Kim and H. Park. Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons. in presented at the Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, 2008. [Online]. https://doi.org/10.1109/ICDM.2008.149.Seung, H. S. & Lee, D. D. Learning the parts of objects by non-negative matrix factorization. Nature 401, 791. https://doi.org/10.1038/44565 (1999).Article 
CAS 

Google Scholar 
D. Lee and H. Seung. Algorithms for non-negative matrix factorization. Adv. Neural Inform. Process. Syst. 13 (2001).Paatero, P. & Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data value. Environmetrics 5, 111–126 (1994).Article 

Google Scholar 
Atif, S. M., Qazi, S. & Gillis, N. Improved SVD-based initialization for nonnegative matrix factorization using low-rank correction. Pattern Recognit. Lett. 122, 59. https://doi.org/10.1016/j.patrec.2019.02.018 (2019).Article 
ADS 

Google Scholar 
Soomro, M. H., Conforto, S., Giunta, G., Ranaldi, S. & De Marchis, C. Comparison of initialization techniques for the accurate extraction of muscle synergies from myoelectric signals via nonnegative matrix factorization. Appl. Bionics Biomech. 2018, 10. https://doi.org/10.1155/2018/3629347 (2018).Article 

Google Scholar 
Boutsidis, C. & Gallopoulos, E. SVD based initialization: A head start for nonnegative matrix factorization. Pattern Recognit. 41, 1362. https://doi.org/10.1016/j.patcog.2007.09.010 (2008).Article 

Google Scholar 
Banks, C. L., Pai, M. M., McGuirk, T. E., Fregly, B. J. & Patten, C. Methodological choices in muscle synergy analysis impact differentiation of physiological characteristics following stroke. Front. Comput. Neurosci. 11, 78. https://doi.org/10.3389/fncom.2017.00078 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Safavynia, S. A. & Ting, L. H. Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations. J. Neurophysiol. 107, 177. https://doi.org/10.1152/jn.00653.2011 (2012).Article 

Google Scholar 
Tresch, M. C., Cheung, V. C. K. & d’Avella, A. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol. 95, 2212. https://doi.org/10.1152/jn.00222.2005 (2006).Article 

Google Scholar 
Steele, K. M., Tresch, M. C. & Perreault, E. J. Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses. J. Neurophysiol. 113, 2113. https://doi.org/10.1152/jn.00769.2013 (2015).Article 

Google Scholar 
Meyer, A. J. et al. Muscle synergies facilitate computational prediction of subject-specific walking motions. Front. Bioeng. Biotechnol. 4, 77. https://doi.org/10.3389/fbioe.2016.00077 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Rodriguez, K. L., Roemmich, R. T., Cam, B., Fregly, B. J. & Hass, C. J. Persons with Parkinson’s disease exhibit decreased neuromuscular complexity during gait. Clin. Neurophysiol. 124, 1397. https://doi.org/10.1016/j.clinph.2013.02.006 (2013).Article 

Google Scholar 
L. Ting and S. Chvatal. Decomposing Muscle Activity in Motor TasksMethods and Interpretation,” 2010, pp. 102–138.Frère, J. & Hug, F. “Between-subject variability of muscle synergies during a complex motor skill,” (in English). Front. Comput. Neurosci. https://doi.org/10.3389/fncom.2012.00099 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Ivanenko, Y. P., Poppele, R. E. & Lacquaniti, F. Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556, 282. https://doi.org/10.1113/jphysiol.2003.057174 (2004).Article 
CAS 

Google Scholar 
Ogihara, H. et al. Kinematic gait asymmetry assessment using joint angle data in patients with chronic stroke—A normalized cross-correlation approach. Gait Posture 80, 173. https://doi.org/10.1016/j.gaitpost.2020.05.042 (2020).Article 

Google Scholar 
Kim, Y., Bulea, T. C. & Damiano, D. L. Children with cerebral palsy have greater stride-to-stride variability of muscle synergies during gait than typically developing children: Implications for motor control complexity. Neurorehabil. Neural. Repair. 32, 844. https://doi.org/10.1177/1545968318796333 (2018).Article 

Google Scholar 
Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7 (1987).Article 

Google Scholar 
Delp, S. L. et al. “OpenSim: Open-source software to create and analyze dynamic simulations of movement,” (in eng). IEEE Trans. Biomed. Eng. 54(11), 1940–1950. https://doi.org/10.1109/tbme.2007.901024 (2007).Article 
PubMed 

Google Scholar 
W. Keenon et al., “Rapid bilevel optimization to concurrently solve musculoskeletal scaling, marker registration, and inverse kinematic problems for human motion reconstruction. bioRxiv. 2022.08.22.504896, 2022, https://doi.org/10.1101/2022.08.22.504896.Rajagopal, A. et al. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63, 2079. https://doi.org/10.1109/TBME.2016.2586891 (2016).Article 

Google Scholar 
J. Higgins, R. Blair, and S. Tashtoush. The aligned rank transform procedure. in Conference on Applied Statistics in Agriculture, 04/26 1990, https://doi.org/10.4148/2475-7772.1443.J. Wobbrock, L. Findlater, D. Gergle, and J. Higgins. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only ANOVA Procedures. in Conference on Human Factors in Computing Systems, p. 146, 2011, https://doi.org/10.1145/1978942.1978963.L. A. Elkin, M. Kay, J. J. Higgins, and J. O. Wobbrock, “An Aligned Rank Transform Procedure for Multifactor Contrast Tests,” p. 768, 2021, https://doi.org/10.1145/3472749.3474784.Guimarães, A. N., Ugrinowitsch, H., Dascal, J. B., Porto, A. B. & Okazaki, V. H. A. “Freezing degrees of freedom during motor learning: a systematic review,” (in eng). Motor Control 24(3), 457–471. https://doi.org/10.1123/mc.2019-0060 (2020).Article 
PubMed 

Google Scholar 
Brüll, L. et al. Spatiotemporal modulation of a common set of muscle synergies during unpredictable and predictable gait perturbations in older adults. J. Exp. Biol. https://doi.org/10.1242/jeb.247271 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Santuz, A., Laflamme, O. D. & Akay, T. “The brain integrates proprioceptive information to ensure robust locomotion,” (in eng). J. Physiol. 600(24), 5267–5294. https://doi.org/10.1113/JP283181 (2022).Article 
CAS 
PubMed 

Google Scholar 
Santuz, A., Ekizos, A., Eckardt, N., Kibele, A. & Arampatzis, A. “Challenging human locomotion: stability and modular organisation in unsteady conditions,” (in eng). Sci. Rep. 8(1), 2740. https://doi.org/10.1038/s41598-018-21018-4 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Martino, G. et al. “Neuromuscular adjustments of gait associated with unstable conditions,” (in eng). J. Neurophysiol. 114(5), 2867–2882. https://doi.org/10.1152/jn.00029.2015 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Janshen, L., Santuz, A., Ekizos, A. & Arampatzis, A. Fuzziness of muscle synergies in patients with multiple sclerosis indicates increased robustness of motor control during walking,” (in eng). Sci. Rep. 10(1), 7249. https://doi.org/10.1038/s41598-020-63788-w (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Janshen, L., Santuz, A. & Arampatzis, A. “Muscle synergies in patients with multiple sclerosis reveal demand-specific alterations in the modular organization of locomotion,” (in eng). Front. Hum. Neurosci. 14, 593365. https://doi.org/10.3389/fnhum.2020.593365 (2020).Article 
PubMed 

Google Scholar 
Mizuta, N. et al. Merged swing-muscle synergies and their relation to walking characteristics in subacute post-stroke patients: An observational study. PLoS One 17, e0263613. https://doi.org/10.1371/journal.pone.0263613 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cheung, V. C. K. et al. Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. USA 109, 14656. https://doi.org/10.1073/pnas.1212056109 (2012).Article 
ADS 

Google Scholar 
Allen, J. L., Kesar, T. M. & Ting, L. H. Motor module generalization across balance and walking is impaired after stroke. J. Neurophysiol. 122, 289. https://doi.org/10.1152/jn.00561.2018 (2019).Article 

Google Scholar 
Ivanenko, Y. P. et al. Changes in the spinal segmental motor output for stepping during development from infant to adult. J. Neurosci. 33, 36a. https://doi.org/10.1523/JNEUROSCI.2722-12.2013 (2013).Article 
CAS 

Google Scholar 
Cheung, V. C. K. et al. Plasticity of muscle synergies through fractionation and merging during development and training of human runners. Nat. Commun. 11(1), 4356. https://doi.org/10.1038/s41467-020-18210-4 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, T. & Hallett, M. The influence of normal human ageing on automatic movements. J. Physiol. 562, 615. https://doi.org/10.1113/jphysiol.2004.076042 (2005).Article 
CAS 

Google Scholar 
Lin, C.-H. et al. Age related differences in the neural substrates of motor sequence learning after interleaved and repetitive practice. Neuroimage 62, 2020. https://doi.org/10.1016/j.neuroimage.2012.05.015 (2012).Article 

Google Scholar 
Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W. & Jonker, C. Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiol. Aging 24, 1019. https://doi.org/10.1016/S0197-4580(03)00030-7 (2003).Article 

Google Scholar 
Sammon, J. W. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C–18, 409. https://doi.org/10.1109/T-C.1969.222678 (1969).Article 

Google Scholar 

Hot Topics

Related Articles