Gamma amplitude-envelope correlations are strongly elevated within hyperexcitable networks in focal epilepsy

Spencer, S. S. Neural networks in human epilepsy: Evidence of and implications for treatment. Epilepsia 43, 219–227 (2002).Article 
PubMed 

Google Scholar 
Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).Article 
CAS 
PubMed 

Google Scholar 
Rosenow, F. & Lüders, H. Presurgical evaluation of epilepsy. Brain 124, 1683–1700 (2001).Article 
CAS 
PubMed 

Google Scholar 
Lüders, H. O., Najm, I., Nair, D., Widdess-Walsh, P. & Bingman, W. The epileptogenic zone: General principles. Epileptic Disorders 8, S1–S9 (2006).Article 
PubMed 

Google Scholar 
Jehi, L. E., Silveira, D. C., Bingaman, W. & Najm, I. Temporal lobe epilepsy surgery failures: Predictors of seizure recurrence, yield of reevaluation, and outcome following reoperation. J. Neurosurg. 113, 1186–1194 (2010).Article 
PubMed 

Google Scholar 
Najm, I. et al. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia 54, 772–782 (2013).Article 
PubMed 

Google Scholar 
Zijlmans, M., Zweiphenning, W. & van Klink, N. Changing concepts in presurgical assessment for epilepsy surgery. Nat. Rev. Neurol. 15, 594–606 (2019).Article 
PubMed 

Google Scholar 
Papadelis, C. & Perry, M. S. Seminars in Pediatric Neurology, Elsevier, 100919.Bernabei, J. M. et al. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 146, 2248–2258 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Badawy, R., Freestone, D., Lai, A. & Cook, M. Epilepsy: Ever-changing states of cortical excitability. Neuroscience 222, 89–99 (2012).Article 
CAS 
PubMed 

Google Scholar 
Badawy, R. A., Curatolo, J. M., Newton, M., Berkovic, S. F. & Macdonell, R. A. Changes in cortical excitability differentiate generalized and focal epilepsy. Ann. Neurol. 61, 324–331 (2007).Article 
PubMed 

Google Scholar 
Porciatti, V., Bonanni, P., Fiorentini, A. & Guerrini, R. Lack of cortical contrast gain control in human photosensitive epilepsy. Nat. Neurosci. 3, 259–263 (2000).Article 
CAS 
PubMed 

Google Scholar 
Frauscher, B. et al. High-frequency oscillations: the state of clinical research. Epilepsia 58, 1316–1329 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Roehri, N. & Bartolomei, F. Are high-frequency oscillations better biomarkers of the epileptogenic zone than spikes?. Curr. Opin. Neurol. 32, 213–219 (2019).Article 
PubMed 

Google Scholar 
George, D. D., Ojemann, S. G., Drees, C. & Thompson, J. A. Stimulation mapping using stereoelectroencephalography: Current and future directions. Front. Neurol. 11, 320 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Trébuchon, A. & Chauvel, P. Electrical stimulation for seizure induction and functional mapping in stereoelectroencephalography. J. Clin. Neurophysiol. 33, 511–521 (2016).Article 
PubMed 

Google Scholar 
Frauscher, B. et al. Stimulation to probe, excite, and inhibit the epileptic brain. Epilepsia 64, S49 (2023).Article 
PubMed 

Google Scholar 
Matsumoto, R., Kunieda, T. & Nair, D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 44, 27–36 (2017).Article 
PubMed 

Google Scholar 
Ramantani, G. et al. Passive and active markers of cortical excitability in epilepsy. Epilepsia 64, S25 (2023).Article 
PubMed 

Google Scholar 
Valentin, A. et al. Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. Brain 125, 1709–1718 (2002).Article 
CAS 
PubMed 

Google Scholar 
Badawy, R. A., Harvey, A. S. & Macdonell, R. A. Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy-part 2. J. Clin. Neurosci. 16, 485–500 (2009).Article 
PubMed 

Google Scholar 
Badawy, R. A., Harvey, A. S. & Macdonell, R. A. Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy–part 1. J. Clin. Neurosci. 16, 355–365 (2009).Article 
CAS 
PubMed 

Google Scholar 
He, B. et al. Electrophysiological brain connectivity: Theory and implementation. IEEE Trans. Biomed. Eng. 66, 2115–2137 (2019).Article 

Google Scholar 
O’Neill, G. C. et al. Dynamics of large-scale electrophysiological networks: A technical review. Neuroimage 180, 559–576 (2018).Article 
PubMed 

Google Scholar 
Bastos, A. M. & Schoffelen, J.-M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Lagarde, S., Bénar, C.-G., Wendling, F. & Bartolomei, F. Interictal functional connectivity in focal refractory epilepsies investigated by intracranial EEG. Brain Conn. 12, 850–869 (2022).Article 

Google Scholar 
Antony, A. R. et al. Functional connectivity estimated from intracranial EEG predicts surgical outcome in intractable temporal lobe epilepsy. PloS One 8, e77916 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jiang, H. et al. Interictal SEEG resting-state connectivity localizes the seizure onset zone and predicts seizure outcome. Adv. Sci. 9, 2200887 (2022).Article 

Google Scholar 
Lagarde, S. et al. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain 141, 2966–2980 (2018).Article 
PubMed 

Google Scholar 
Malladi, R., Kalamangalam, G., Tandon, N. & Aazhang, B. Identifying seizure onset zone from the causal connectivity inferred using directed information. IEEE J. Select. Topics Signal Process. 10, 1267–1283 (2016).Article 
ADS 

Google Scholar 
Wang, A. et al. Resting-state SEEG-based brain network analysis for the detection of epileptic area. J. Neurosci. Methods 390, 109839 (2023).Article 
PubMed 

Google Scholar 
Wilke, C., Worrell, G. & He, B. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia 52, 84–93 (2011).Article 
PubMed 

Google Scholar 
Zaveri, H. P. et al. Localization-related epilepsy exhibits significant connectivity away from the seizure-onset area. Neuroreport 20, 891–895 (2009).Article 
PubMed 

Google Scholar 
Zweiphenning, W. et al. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy. NeuroImage Clin. 12, 928–939 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mukamel, R. et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309, 951–954 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Mukamel, R. et al. Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex. Human Brain Mapp. 32, 1181–1193 (2011).Article 

Google Scholar 
Nir, Y. et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol. 17, 1275–1285 (2007).Article 
CAS 
PubMed 

Google Scholar 
Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28, 11526–11536 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Margineanu, D. G. Epileptic hypersynchrony revisited. Neuroreport 21, 963–967 (2010).Article 
PubMed 

Google Scholar 
Penfield, W. & Jasper, H. Epilepsy and the functional anatomy of the human brain. (1954).LaViolette, P. S. et al. Three-dimensional visualization of subdural electrodes for presurgical planning. Neurosurgery 68, 152 (2011).PubMed 

Google Scholar 
Mewett, D. T., Nazeran, H. & Reynolds, K. J. in 2001 conference proceedings of the 23rd annual international conference of the IEEE Engineering in Medicine and Biology Society. 2190–2193 (IEEE).Bruña, R., Maestú, F. & Pereda, E. Phase locking value revisited: Teaching new tricks to an old dog. J. Neural Eng. 15, 056011 (2018).Article 
ADS 
PubMed 

Google Scholar 
Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Human Brain Mapp. 8, 194–208 (1999).Article 
CAS 

Google Scholar 
Aydore, S., Pantazis, D. & Leahy, R. M. A note on the phase locking value and its properties. Neuroimage 74, 231–244 (2013).Article 
PubMed 

Google Scholar 
Mormann, F., Lehnertz, K., David, P. & Elger, C. E. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D Nonlinear Phenom. 144, 358–369 (2000).Article 
ADS 

Google Scholar 
García-Prieto, J., Bajo, R. & Pereda, E. Efficient computation of functional brain networks: Toward real-time functional connectivity. Front. Neuroinf. 11, 8 (2017).Article 

Google Scholar 
Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010).Article 
PubMed 

Google Scholar 
Tewarie, P., van Dellen, E., Hillebrand, A. & Stam, C. J. The minimum spanning tree: An unbiased method for brain network analysis. Neuroimage 104, 177–188 (2015).Article 
CAS 
PubMed 

Google Scholar 
Crone, N. E., Korzeniewska, A. & Franaszczuk, P. J. Cortical gamma responses: Searching high and low. Int. J. Psychophysiol. 79, 9–15 (2011).Article 
PubMed 

Google Scholar 
Crone, N. E. et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain J. Neurol. 121, 2271–2299 (1998).Article 

Google Scholar 
Miller, K. J. et al. Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pfurtscheller, G. EEG event-related desynchronization (ERD) and synchronization (ERS). Electroencephalograp. Clin. Neurophysiol. 1, 26 (1997).Article 

Google Scholar 
Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cognit. Sci. 14, 506–515 (2010).Article 

Google Scholar 
Florin, E. & Baillet, S. The brain’s resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations. Neuroimage 111, 26–35 (2015).Article 
PubMed 

Google Scholar 
Osipova, D., Hermes, D. & Jensen, O. Gamma power is phase-locked to posterior alpha activity. PloS One 3, e3990 (2008).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Whittingstall, K. & Logothetis, N. K. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64, 281–289 (2009).Article 
CAS 
PubMed 

Google Scholar 
Voytek, B. et al. Shifts in gamma phase–amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Human Neurosci. 4, 191 (2010).Article 

Google Scholar 
Alper, K. et al. Localizing epileptogenic regions in partial epilepsy using three-dimensional statistical parametric maps of background EEG source spectra. NeuroImage 39, 1257–1265 (2008).Article 
PubMed 

Google Scholar 
Gallen, C. et al. Magnetic source imaging of abnormal low-frequency magnetic activity in presurgical evaluations of epilepsy. Epilepsia 38, 452–460 (1997).Article 
CAS 
PubMed 

Google Scholar 
Ishibashi, H. et al. Detection and significance of focal, interictal, slow-wave activity visualized by magnetoencephalography for localization of a primary epileptogenic region. J. Neurosurg. 96, 724–730 (2002).Article 
PubMed 

Google Scholar 
Vanrumste, B., Jones, R. D., Bones, P. J. & Carroll, G. J. Slow-wave activity arising from the same area as epileptiform activity in the EEG of paediatric patients with focal epilepsy. Clin. Neurophysiol. 116, 9–17 (2005).Article 
PubMed 

Google Scholar 
Tao, J. X. et al. Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy. Epilepsia 52, 467–476 (2011).Article 
PubMed 

Google Scholar 
Ali, R. et al. Phase-amplitude coupling measures for determination of the epileptic network: A methodological comparison. J. Neurosci. Methods 370, 109484 (2022).Article 
PubMed 

Google Scholar 
Hashimoto, H. et al. Phase-amplitude coupling between infraslow and high-frequency activities well discriminates between the preictal and interictal states. Sci. Rep. 11, 17405 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Amiri, M., Frauscher, B. & Gotman, J. Phase-amplitude coupling is elevated in deep sleep and in the onset zone of focal epileptic seizures. Front. Human Neurosci. 10, 387 (2016).Article 

Google Scholar 
Ko, A. L., Weaver, K. E., Hakimian, S. & Ojemann, J. G. Identifying functional networks using endogenous connectivity in gamma band electrocorticography. Brain Conn. 3, 491–502 (2013).Article 

Google Scholar 
Arnulfo, G. et al. Long-range phase synchronization of high-frequency oscillations in human cortex. Nature Commun. 11, 5363 (2020).Article 
ADS 
CAS 

Google Scholar 
Stam, C. et al. The trees and the forest: characterization of complex brain networks with minimum spanning trees. Int. J. Psychophysiol. 92, 129–138 (2014).Article 
CAS 
PubMed 

Google Scholar 
Corona, L. et al. Non-invasive mapping of epileptogenic networks predicts surgical outcome. Brain 146, 1916–1931 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Rijal, S. et al. Functional connectivity discriminates epileptogenic states and predicts surgical outcome in children with drug resistant epilepsy. Sci. Rep. 13, 9622 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, A. et al. Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy. Netw. Neurosci. 2, 218–240 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ray, S. & Maunsell, J. H. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ray, S. & Maunsell, J. H. Do gamma oscillations play a role in cerebral cortex?. Trends Cogn. Sci. 19, 78–85 (2015).Article 
PubMed 

Google Scholar 
Whittington, M. A., Cunningham, M. O., LeBeau, F. E., Racca, C. & Traub, R. D. Multiple origins of the cortical gamma rhythm. Dev. Neurobiol. 71, 92–106 (2011).Article 
PubMed 

Google Scholar 
Misra, A., Long, X., Sperling, M. R., Sharan, A. D. & Moxon, K. A. Increased neuronal synchrony prepares mesial temporal networks for seizures of neocortical origin. Epilepsia 59, 636–649 (2018).Article 
PubMed 

Google Scholar 
Serafini, R. & Loeb, J. A. Enhanced slow waves at the periphery of human epileptic foci. Clin. Neurophysiol. 126, 1117–1123 (2015).Article 
PubMed 

Google Scholar 
Trevelyan, A. J. & Schevon, C. A. How inhibition influences seizure propagation. Neuropharmacology 69, 45–54 (2013).Article 
CAS 
PubMed 

Google Scholar 
Jiruska, P. et al. Synchronization and desynchronization in epilepsy: Controversies and hypotheses. J. Physiol. 591, 787–797 (2013).Article 
CAS 
PubMed 

Google Scholar 
Cimbalnik, J. et al. Multi-feature localization of epileptic foci from interictal, intracranial EEG. Clin. Neurophysiol. 130, 1945–1953 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Varatharajah, Y. et al. Integrating artificial intelligence with real-time intracranial EEG monitoring to automate interictal identification of seizure onset zones in focal epilepsy. J. Neural Eng. 15, 046035 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles