Prognostic and therapeutic value of the Eph/Ephrin signaling pathway in pancreatic cancer explored based on bioinformatics

Vincent, A., Herman, J., Schulick, R., Hruban, R. H. & Goggins, M. Pancreatic cancer. Lancet 378, 607–620. https://doi.org/10.1016/S0140-6736(10)62307-0 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Halbrook, C. J., Lyssiotis, C. A., Pasca di Magliano, M. & Maitra, A. Pancreatic cancer: Advances and challenges. Cell 186, 1729–1754. https://doi.org/10.1016/j.cell.2023.02.014 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chiorean, E. G. & Coveler, A. L. Pancreatic cancer: Optimizing treatment options, new, and emerging targeted therapies. Drug Des. Devel. Ther. 9, 3529–3545. https://doi.org/10.2147/DDDT.S60328 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell Biol. 3, 475–486. https://doi.org/10.1038/nrm856 (2002).Article 
CAS 
PubMed 

Google Scholar 
Murai, K. K. & Pasquale, E. B. ’Eph’ective signaling: Forward, reverse and crosstalk. J. Cell Sci. 116, 2823–2832. https://doi.org/10.1242/jcs.00625 (2003).Article 
CAS 
PubMed 

Google Scholar 
Pasquale, E. B. Eph-ephrin promiscuity is now crystal clear. Nat. Neurosci. 7, 417–418. https://doi.org/10.1038/nn0504-417 (2004).Article 
CAS 
PubMed 

Google Scholar 
Papadakos, S. P., Dedes, N., Gkolemi, N., Machairas, N. & Theocharis, S. The EPH/Ephrin system in pancreatic ductal adenocarcinoma (PDAC): From pathogenesis to treatment. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24033015 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Adams, R. H. & Klein, R. Eph receptors and ephrin ligands. Essential mediators of vascular development. Trends Cardiovasc. Med. 10, 183–188. https://doi.org/10.1016/s1050-1738(00)00046-3 (2000).Article 
CAS 
PubMed 

Google Scholar 
Zelinski, D. P., Zantek, N. D., Stewart, J. C., Irizarry, A. R. & Kinch, M. S. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 61, 2301–2306 (2001).CAS 
PubMed 

Google Scholar 
Fox, B. P. & Kandpal, R. P. Invasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application. Biochem. Biophys. Res. Commun. 318, 882–892. https://doi.org/10.1016/j.bbrc.2004.04.102 (2004).Article 
CAS 
PubMed 

Google Scholar 
Berclaz, G. et al. Loss of EphB4 receptor tyrosine kinase protein expression during carcinogenesis of the human breast. Oncol. Rep. 9, 985–989 (2002).CAS 
PubMed 

Google Scholar 
Kinch, M. S., Moore, M. B. & Harpole, D. H. Jr. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin. Cancer Res. 9, 613–618 (2003).CAS 
PubMed 

Google Scholar 
Nakamura, R. et al. EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci. 96, 42–47. https://doi.org/10.1111/j.1349-7006.2005.00007.x (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kataoka, H. et al. Expression profile of EFNB1, EFNB2, two ligands of EPHB2 in human gastric cancer. J. Cancer Res. Clin. Oncol. 128, 343–348. https://doi.org/10.1007/s00432-002-0355-0 (2002).Article 
CAS 
PubMed 

Google Scholar 
Guan, M., Xu, C., Zhang, F. & Ye, C. Aberrant methylation of EphA7 in human prostate cancer and its relation to clinicopathologic features. Int. J. Cancer 124, 88–94. https://doi.org/10.1002/ijc.23890 (2009).Article 
CAS 
PubMed 

Google Scholar 
Landen, C. N., Kinch, M. S. & Sood, A. K. EphA2 as a target for ovarian cancer therapy. Expert Opin. Ther. Targets 9, 1179–1187. https://doi.org/10.1517/14728222.9.6.1179 (2005).Article 
CAS 
PubMed 

Google Scholar 
Batlle, E. et al. EphB receptor activity suppresses colorectal cancer progression. Nature 435, 1126–1130. https://doi.org/10.1038/nature03626 (2005).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Iiizumi, M. et al. EphA4 receptor, overexpressed in pancreatic ductal adenocarcinoma, promotes cancer cell growth. Cancer Sci. 97, 1211–1216. https://doi.org/10.1111/j.1349-7006.2006.00313.x (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hafner, C., Becker, B., Landthaler, M. & Vogt, T. Expression profile of Eph receptors and ephrin ligands in human skin and downregulation of EphA1 in nonmelanoma skin cancer. Mod. Pathol. 19, 1369–1377. https://doi.org/10.1038/modpathol.3800660 (2006).Article 
CAS 
PubMed 

Google Scholar 
Zhuang, G. et al. Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res. 70, 299–308. https://doi.org/10.1158/0008-5472.CAN-09-1845 (2010).Article 
CAS 
PubMed 

Google Scholar 
Huang, F. et al. Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: Rationale for patient selection. Cancer Res. 67, 2226–2238. https://doi.org/10.1158/0008-5472.CAN-06-3633 (2007).Article 
CAS 
PubMed 

Google Scholar 
Wang, X. D. et al. Identification of candidate predictive and surrogate molecular markers for dasatinib in prostate cancer: Rationale for patient selection and efficacy monitoring. Genome Biol. 8, R255. https://doi.org/10.1186/gb-2007-8-11-r255 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883. https://doi.org/10.1093/bioinformatics/bts034 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, D.-T. et al. Prognostic fifteen-gene signature for early stage pancreatic ductal adenocarcinoma. PloS One 10, e0133562. https://doi.org/10.1371/journal.pone.0133562 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, G. et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin. Cancer Res. 19, 4983–4993. https://doi.org/10.1158/1078-0432.CCR-13-0209 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, G. et al. DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PloS One 7, e31507. https://doi.org/10.1371/journal.pone.0031507 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, S. et al. A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2. Cancer Res. 76, 3838–3850. https://doi.org/10.1158/0008-5472.CAN-15-2841 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Puleo, F. et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology 155, 1999-2013.e1993. https://doi.org/10.1053/j.gastro.2018.08.033 (2018).Article 
PubMed 

Google Scholar 
Zhang, J. et al. The International Cancer Genome Consortium Data Portal. Nat. Biotechnol. 37, 367–369. https://doi.org/10.1038/s41587-019-0055-9 (2019).Article 
CAS 
PubMed 

Google Scholar 
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. 102, 15545–15550. https://doi.org/10.1073/pnas.0506580102 (2005)Sepulveda, J. L. Using R and bioconductor in clinical genomics and transcriptomics. J. Mol. Diagn. https://doi.org/10.1016/j.jmoldx.2019.08.006 (2020).Article 
PubMed 

Google Scholar 
Chen, C. et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009 (2020).Article 
CAS 
PubMed 

Google Scholar 
Cui, Y. et al. Determination and characterization of molecular heterogeneity and precision medicine strategies of patients with pancreatic cancer and pancreatic neuroendocrine tumor based on oxidative stress and mitochondrial dysfunction-related genes. Front. Endocrinol. (Lausanne) 14, 1127441. https://doi.org/10.3389/fendo.2023.1127441 (2023).Article 
PubMed 

Google Scholar 
Sun, J., Chen, F. & Wu, G. Role of NF-κB pathway in kidney renal clear cell carcinoma and its potential therapeutic implications. Aging 15, 11313–11330. https://doi.org/10.18632/aging.205129 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xie, D., Wang, S., Jiang, B., Li, G. & Wu, G. The potential value of the Purinergic pathway in the prognostic assessment and clinical application of kidney renal clear cell carcinoma. Aging 16, 246–266. https://doi.org/10.18632/aging.205364 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maeser, D., Gruener, R. F. & Huang, R. S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. https://doi.org/10.1093/bib/bbab260 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612. https://doi.org/10.1038/ncomms3612 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Guo, C. et al. The landscape of gene co-expression modules correlating with prognostic genetic abnormalities in AML. J. Transl. Med. 19, 228. https://doi.org/10.1186/s12967-021-02914-2 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55. https://doi.org/10.1016/j.cell.2013.03.008 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550. https://doi.org/10.1038/s41591-018-0014-x (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ieguchi, K. & Maru, Y. Eph/Ephrin signaling in the tumor microenvironment. Adv. Exp. Med. Biol. 1270, 45–56. https://doi.org/10.1007/978-3-030-47189-7_3 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kuraishi, Y. et al. Correlation of clinicopathological features and leucine-rich repeat-containing G-protein-coupled receptor 5 expression in pancreatic ductal adenocarcinoma. Pathol. Res. Pract. 215, 152623. https://doi.org/10.1016/j.prp.2019.152623 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kamakura, M. et al. LGR5 expression and clinicopathological features of the invasive front in the fat infiltration area of pancreatic cancer. Diagn. Pathol. 17, 21. https://doi.org/10.1186/s13000-022-01203-w (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xi, H. Q., Wu, X. S., Wei, B. & Chen, L. Eph receptors and ephrins as targets for cancer therapy. J. Cell Mol. Med. 16, 2894–2909. https://doi.org/10.1111/j.1582-4934.2012.01612.x (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guenther, M. et al. The impact of adjuvant therapy on outcome in UICC stage I pancreatic cancer. Int. J. Cancer 151, 914–919. https://doi.org/10.1002/ijc.34044 (2022).Article 
CAS 
PubMed 

Google Scholar 
Belli, C. et al. Targeting the microenvironment in solid tumors. Cancer Treat Rev. 65, 22–32. https://doi.org/10.1016/j.ctrv.2018.02.004 (2018).Article 
CAS 
PubMed 

Google Scholar 
Alonso-Nocelo, M. et al. Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma. Gut 72, 345–359. https://doi.org/10.1136/gutjnl-2021-325564 (2023).Article 
CAS 
PubMed 

Google Scholar 
Feng, H. et al. EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis. J. Clin. Investig. 124, 3741–3756. https://doi.org/10.1172/JCI73093 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pagnotta, S. M. et al. Ensemble of gene signatures identifies novel biomarkers in colorectal cancer activated through PPARγ and TNFα signaling. PloS One 8, e72638. https://doi.org/10.1371/journal.pone.0072638 (2013).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Koshikawa, K. et al. Significant up-regulation of a novel gene, CLCP1, in a highly metastatic lung cancer subline as well as in lung cancers in vivo. Oncogene 21, 2822–2828 (2002).Article 
CAS 
PubMed 

Google Scholar 
Liu, D.-J. et al. The role of Dickkopf-1 as a potential prognostic marker in pancreatic ductal adenocarcinoma. Cell Cycle 16, 1622–1629. https://doi.org/10.1080/15384101.2017.1356510 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
D’Amico, L. et al. Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer. J. Exp. Med. 213, 827–840. https://doi.org/10.1084/jem.20150950 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qin, S. et al. DSG2 expression is correlated with poor prognosis and promotes early-stage cervical cancer. Cancer Cell Int. 20, 206. https://doi.org/10.1186/s12935-020-01292-x (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, T. et al. DSG2 expression is low in colon cancer and correlates with poor survival. BMC Gastroenterol. 21, 7. https://doi.org/10.1186/s12876-020-01588-2 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, S. et al. Negative expression of DSG1 and DSG2, as prognostic biomarkers, impacts on the overall survival in patients with extrahepatic cholangiocarcinoma. Analyt. Cell. Pathol. (Amsterdam) 9831646, 2020. https://doi.org/10.1155/2020/9831646 (2020).Article 
CAS 

Google Scholar 
Han, C. P. et al. Desmoglein-2 overexpression predicts poor prognosis in hepatocellular carcinoma patients. Eur. Rev. Med. Pharmacol. Sci. 22, 5481–5489. https://doi.org/10.26355/eurrev_201809_15808 (2018).Article 
PubMed 

Google Scholar 
Hütz, K., Zeiler, J., Sachs, L., Ormanns, S. & Spindler, V. Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells. Mol. Carcinog. 56, 1884–1895. https://doi.org/10.1002/mc.22644 (2017).Article 
CAS 
PubMed 

Google Scholar 
Song, Y. et al. Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells. J. Transl. Med. 21, 390. https://doi.org/10.1186/s12967-023-04260-x (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Iżycka, N. et al. Cancer stem cell markers-clinical relevance and prognostic value in high-grade serous ovarian cancer (HGSOC) based on the cancer genome atlas analysis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241612746 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, C. Y. et al. Proteomic analysis reveals overexpression of moesin and cytokeratin 17 proteins in colorectal carcinoma. Oncol. Rep. 27, 608–620. https://doi.org/10.3892/or.2011.1545 (2012).Article 
CAS 
PubMed 

Google Scholar 
Chivu-Economescu, M. et al. Knockdown of KRT17 by siRNA induces antitumoral effects on gastric cancer cells. Gastr. Cancer 20, 948–959. https://doi.org/10.1007/s10120-017-0712-y (2017).Article 
CAS 

Google Scholar 
Dong, M., Dong, Z., Zhu, X., Zhang, Y. & Song, L. Long non-coding RNA MIR205HG regulates KRT17 and tumor processes in cervical cancer via interaction with SRSF1. Exp. Mol. Pathol. 111, 104322. https://doi.org/10.1016/j.yexmp.2019.104322 (2019).Article 
CAS 
PubMed 

Google Scholar 
Sarlos, D. P., Yusenko, M. V., Peterfi, L., Szanto, A. & Kovacs, G. Dual role of KRT17: Development of papillary renal cell tumor and progression of conventional renal cell carcinoma. J. Cancer 10, 5124–5129. https://doi.org/10.7150/jca.32579 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z. et al. Overexpression of KRT17 promotes proliferation and invasion of non-small cell lung cancer and indicates poor prognosis. Cancer Manag. Res. 11, 7485–7497. https://doi.org/10.2147/CMAR.S218926 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, D. et al. KRT17 functions as a tumor promoter and regulates proliferation, migration and invasion in pancreatic cancer via mTOR/S6k1 pathway. Cancer Manag. Res. 12, 2087–2095. https://doi.org/10.2147/CMAR.S243129 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sarvaria, A., Madrigal, J. A. & Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cell Mol. Immunol. 14, 662–674. https://doi.org/10.1038/cmi.2017.35 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tay, R. E., Richardson, E. K. & Toh, H. C. Revisiting the role of CD4(+) T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 28, 5–17. https://doi.org/10.1038/s41417-020-0183-x (2021).Article 
CAS 
PubMed 

Google Scholar 
Darvin, P., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med. 50, 1–11. https://doi.org/10.1038/s12276-018-0191-1 (2018).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles