Development of zeolite adsorbents for CO2 separation in achieving carbon neutrality

Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data. 14, 4811–4900 (2022).Article 

Google Scholar 
Mitchell, J. F. B. The “Greenhouse” effect and climate change. Rev. Geophys. 27, 115–139 (1989).Article 

Google Scholar 
Liu, Z. et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2022).Article 

Google Scholar 
Hong, W. Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci. Technol. 3, 100044 (2022).Article 
CAS 

Google Scholar 
Siegelman, R. L., Kim, E. J. & Long, J. R. Porous materials for carbon dioxide separations. Nat. Mater. 20, 1060–1072 (2021).Article 
CAS 

Google Scholar 
Chen, S., Liu, J., Zhang, Q., Teng, F. & McLellan, B. C. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sustain. Energy Rev. 167, 112537 (2022).Article 
CAS 

Google Scholar 
Dziejarski, B., Krzyżyńska, R. & Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel. 342, 127776 (2023).Article 
CAS 

Google Scholar 
Yao, X., Zhong, P., Zhang, X. & Zhu, L. Business model design for the carbon capture utilization and storage (CCUS) project in China. Energy Policy. 121, 519–533 (2018).Article 

Google Scholar 
Tapia, J. F. D., Lee, J.-Y., Ooi, R. E. H., Foo, D. C. Y. & Tan, R. R. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustain. Prod. Consum. 13, 1–15 (2018).Article 

Google Scholar 
Pérez-Botella, E., Valencia, S. & Rey, F. Zeolites in adsorption processes: state of the art and future prospects. Chem. Rev. 122, 17647–17695 (2022).Article 
PubMed Central 

Google Scholar 
Bisotti, F., Hoff, K. A., Mathisen, A. & Hovland, J. Direct Air capture (DAC) deployment: a review of the industrial deployment. Chem. Eng. Sci. 283, 119416 (2024).Article 
CAS 

Google Scholar 
Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).Article 
PubMed 

Google Scholar 
Wu, C. et al. A comprehensive review of carbon capture science and technologies. Carbon Capture Sci. Technol. 11, 100178 (2023).Article 

Google Scholar 
Fu, D. & Davis, M. E. Carbon dioxide capture with zeotype materials. Chem. Soc. Rev. 51, 9340–9370 (2022).Article 
CAS 

Google Scholar 
Wang, J. et al. Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518 (2014).Article 
CAS 

Google Scholar 
Gao, W. et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 49, 8584–8686 (2020).Article 
CAS 

Google Scholar 
Yang, R. T. Adsorbents: Fundamentals and Applications (Wiley-Interscience, John Wiley & Sons, Inc., 2003).Tao, Z. et al. Metal cation-exchanged LTA zeolites for CO2/N2 and CO2/CH4 separation: the roles of gas-framework and gas-cation interactions. Carbon Capture Sci. Technol. 8, 100126 (2023).Article 
CAS 

Google Scholar 
Kemp, K. C., Min, J. G., Choi, H. J. & Hong, S. B. In New Developments in Adsorption/Separation of Small Molecules by Zeolites (eds Valencia, S. & Rey, F.) 1–30 (Springer, 2020).Boer, D. G., Langerak, J. & Pescarmona, P. P. Zeolites as selective adsorbents for CO2 separation. ACS Appl. Energy Mater. 6, 2634–2656 (2023).Article 
CAS 

Google Scholar 
Barrer, R. M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic Press, 1978).Yang, R. T. Gas Separation by Adsorption Processes (Imperial College Press, 1997).Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).Article 
CAS 
PubMed 

Google Scholar 
Remy, T. et al. Biogas upgrading through kinetic separation of carbon dioxide and methane over Rb- and Cs-ZK-5 zeolites. RSC Advances. 4, 62511–62524 (2014).Article 
CAS 

Google Scholar 
Remy, T. et al. Adsorption and separation of CO2 on KFI zeolites: effect of cation type and Si/Al ratio on equilibrium and kinetic properties. Langmuir 29, 4998–5012 (2013).Article 
CAS 
PubMed 

Google Scholar 
Jensen, N. K. et al. Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 57, 106–113 (2012).Article 
CAS 

Google Scholar 
Chen, K. et al. Gating effect for gas adsorption in microporous materials—mechanisms and applications. Chem. Soc. Rev. 51, 1139–1166 (2022).Article 
CAS 
PubMed 

Google Scholar 
Shang, J. et al. Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites. J. Am. Chem. Soc. 134, 19246–19253 (2012).Article 
CAS 

Google Scholar 
Georgieva, V. M. et al. Triggered gate opening and breathing effects during selective CO2 adsorption by merlinoite zeolite. J. Am. Chem. Soc. 141, 12744–12759 (2019).Article 
CAS 

Google Scholar 
Choi, H. J., Jo, D., Min, J. G. & Hong, S. B. The origin of selective adsorption of CO2 on merlinoite zeolites. Angew. Chem. Int. Ed. 60, 4307–4314 (2021).Article 
CAS 

Google Scholar 
Lozinska, M. M. et al. Understanding carbon dioxide adsorption on univalent cation forms of the flexible zeolite Rho at conditions relevant to carbon capture from flue gases. J. Am. Chem. Soc. 134, 17628–17642 (2012).Article 
CAS 
PubMed 

Google Scholar 
Cundy, C. S. & Cox, P. A. The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 82, 1–78 (2005).Article 
CAS 

Google Scholar 
Cundy, C. S. & Cox, P. A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 103, 663–702 (2003).Article 
CAS 

Google Scholar 
Rebrov, E. V. Sol-gel synthesis of zeolite coatings and their application in catalytic microstructured reactors. Catal. Ind. 1, 322–347 (2009).Article 

Google Scholar 
Kasneryk, V. et al. Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nat. Commun. 10, 5129 (2019).Article 

Google Scholar 
Yamamoto, K., Borjas García, S. E. & Muramatsu, A. Zeolite synthesis using mechanochemical reaction. Microporous Mesoporous Mater. 101, 90–96 (2007).Article 
CAS 

Google Scholar 
Andreyev, M. K. & Zubkov, O. L. Zeolites: Synthesis, Chemistry, and Applications (Nova Science Publishers, 2011).Meng, X. & Xiao, F.-S. Green routes for synthesis of zeolites. Chem. Rev. 114, 1521–1543 (2014).Article 
CAS 

Google Scholar 
Maghfirah, A., Ilmi, M. M., Fajar, A. T. N. & Kadja, G. T. M. A review on the green synthesis of hierarchically porous zeolite. Mater. Today Chem. 17, 100348 (2020).Article 

Google Scholar 
Townsend, R. P. & Coker, E. N. In Studies in Surface Science and Catalysis Vol. 137 (eds van Bekkum, H., Flanigen, E. M., Jacobs, P. A. & Jansen, J. C.) 467–524 (Elsevier, 2001).Ćurković, L., Cerjan-Stefanović, Š. & Filipan, T. Metal ion exchange by natural and modified zeolites. Water Res. 31, 1379–1382 (1997).Article 

Google Scholar 
Ren, N. et al. Unusual pathway of crystallization of zeolite ZSM-5 in a heterogeneous system: phenomenology and starting considerations. Chem. Mater. 24, 1726–1737 (2012).Article 
CAS 

Google Scholar 
Morris, R. E. et al. A synchrotron X-ray diffraction, neutron diffraction, 29Si MAS-NMR, and computational study of the siliceous form of zeolite ferrierite. J. Am. Chem. Soc. 116, 11849–11855 (1994).Article 
CAS 

Google Scholar 
Cheetham, A. K. & Wilkinson, A. P. Synchrotron X-ray and neutron diffraction studies in solid-state chemistry. Angew. Chem. Int. Ed. 31, 1557–1570 (1992).Article 

Google Scholar 
Sedigh Rahimabadi, P., Khodaei, M. & Koswattage, K. R. Review on applications of synchrotron-based X-ray techniques in materials characterization. X-Ray Spectrom. 49, 348–373 (2020).Article 
CAS 

Google Scholar 
Finish, N. et al. Zeolite performance in removal of multicomponent heavy metal contamination from wastewater. J. Hazardous Mater. 457, 131784 (2023).Article 
CAS 

Google Scholar 
Guczi, L. & Bazin, D. Structure and selectivity of metal catalysts: revisiting bimetallic zeolite systems. Appl. Catal. A: Gen. 188, 163–174 (1999).Article 
CAS 

Google Scholar 
Zapelini, I. W., Lorena da Silva, L., Mintova, S. & Cardoso, D. Amine-grafted H-MFI zeolite precursors as acidic-basic catalysts for deacetalization-Knoevenagel condensation. Microporous Mesoporous Mater. 362, 112776 (2023).Article 
CAS 

Google Scholar 
Ridha, F. N., Yang, Y. & Webley, P. A. Adsorption characteristics of a fully exchanged potassium chabazite zeolite prepared from decomposition of zeolite Y. Microporous Mesoporous Mater. 117, 497–507 (2009).Article 
CAS 

Google Scholar 
Biasin, A., Segre, C. U., Salviulo, G., Zorzi, F. & Strumendo, M. Investigation of CaO–CO2 reaction kinetics by in-situ XRD using synchrotron radiation. Chem. Eng. Sci. 127, 13–24 (2015).Article 
CAS 

Google Scholar 
Chen, Y., Wang, H., Li, J. & Lockard, J. V. In situ spectroscopy studies of CO2 adsorption in a dually functionalized microporous metal–organic framework. Journal of Materials Chemistry A. 3, 4945–4953 (2015).Article 
CAS 

Google Scholar 
Stevens, R. W. Jr., Siriwardane, R. V. & Logan, J. In situ Fourier transform infrared (FTIR) investigation of CO2 adsorption onto zeolite materials. Energy Fuels 22, 3070–3079 (2008).Article 
CAS 

Google Scholar 
Rzepka, P. et al. Site-specific adsorption of CO2 in zeolite NaK-A. J. Phys. Chem. C 122, 27005–27015 (2018).Article 
CAS 

Google Scholar 
Bernin, D. & Hedin, N. Perspectives on NMR studies of CO2 adsorption. Curr. Opin. Colloid Interface Sci. 33, 53–62 (2018).Article 
CAS 

Google Scholar 
Landers, J., Gor, G. Y. & Neimark, A. V. Density functional theory methods for characterization of porous materials. Colloids Surf. A: Physicochem. Eng. Asp. 437, 3–32 (2013).Article 
CAS 

Google Scholar 
Songolzadeh, M., Soleimani, M., Takht Ravanchi, M. & Songolzadeh, R. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 828131 (2014).Article 

Google Scholar 
Chue, K. T., Kim, J. N., Yoo, Y. J., Cho, S. H. & Yang, R. T. Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 34, 591–598 (1995).Article 
CAS 

Google Scholar 
Xiao, P. et al. Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption 14, 575–582 (2008).Article 
CAS 

Google Scholar 
Wilkins, N. S. & Rajendran, A. Measurement of competitive CO2 and N2 adsorption on Zeolite 13X for post-combustion CO2 capture. Adsorption 25, 115–133 (2019).Article 
CAS 

Google Scholar 
Liu, Q., Pham, T., Porosoff, M. D. & Lobo, R. F. ZK-5: a CO2-selective zeolite with high working capacity at ambient temperature and pressure. ChemSusChem. 5, 2237–2242 (2012).Article 
CAS 

Google Scholar 
Yang, S.-T., Kim, J. & Ahn, W.-S. CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions. Microporous Mesoporous Mater. 135, 90–94 (2010).Article 
CAS 

Google Scholar 
Walton, K. S., Abney, M. B. & Douglas LeVan, M. CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91, 78–84 (2006).Article 
CAS 

Google Scholar 
Barthomeuf, D. Framework induced basicity in zeolites. Microporous Mesoporous Mater. 66, 1–14 (2003).Article 
CAS 

Google Scholar 
Pirngruber, G. D., Raybaud, P., Belmabkhout, Y., Čejka, J. & Zukal, A. The role of the extra-framework cations in the adsorption of CO2 on faujasite Y. Phys. Chem. Chem. Phys. 12, 13534–13546 (2010).Article 
CAS 
PubMed 

Google Scholar 
Chen, C., Kim, J. & Ahn, W.-S. CO2 capture by amine-functionalized nanoporous materials: a review. Korean J. Chem. Eng. 31, 1919–1934 (2014).Article 
CAS 

Google Scholar 
Su, F. & Lu, C. CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption. Energy Environ. Sci. 5, 9021–9027 (2012).Article 
CAS 

Google Scholar 
Liu, Z., Grande, C. A., Li, P., Yu, J. & Rodrigues, A. E. Adsorption and desorption of carbon dioxide and nitrogen on zeolite 5A. Sep. Sci. Techno. 46, 434–451 (2011).Article 
CAS 

Google Scholar 
Madden, D. & Curtin, T. Carbon dioxide capture with amino-functionalised zeolite-β: a temperature programmed desorption study under dry and humid conditions. Microporous Mesoporous Mater. 228, 310–317 (2016).Article 
CAS 

Google Scholar 
Xu, X., Zhao, X., Sun, L. & Liu, X. Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite. J. Natural Gas Chem. 18, 167–172 (2009).Article 
CAS 

Google Scholar 
Short, G. N. et al. Single-walled zeolitic nanotubes: advantaged supports for poly(ethylenimine) in CO2 separation from simulated air and flue gas. JACS Au. 3, 62–69 (2023).Article 
CAS 

Google Scholar 
Nguyen, T. H., Kim, S., Yoon, M. & Bae, T.-H. Hierarchical zeolites with amine-functionalized mesoporous domains for carbon dioxide capture. ChemSusChem. 9, 455–461 (2016).Article 
CAS 

Google Scholar 
Chen, C., Kim, S.-S., Cho, W.-S. & Ahn, W.-S. Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture. Appl. Surf. Sci. 332, 167–171 (2015).Article 
CAS 

Google Scholar 
Lu, C., Bai, H., Wu, B., Su, F. & Hwang, J. F. Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22, 3050–3056 (2008).Article 
CAS 

Google Scholar 
Liu, Q. et al. NaKA sorbents with high CO2-over-N2 selectivity and high capacity to adsorb CO2. Chem. Commun. 46, 4502–4504 (2010).Article 
CAS 

Google Scholar 
Hao, W., Shi, Y., Ullah, L., Li, R. & Hedin, N. Effects of the ion-exchange sequence on the CO2 uptake and CO2–over–N2 selectivity of zeolite NaKA. Sustain. Chem. Clim. Action 3, 100030 (2023).Article 

Google Scholar 
Mace, A., Laasonen, K. & Laaksonen, A. Free energy barriers for CO2 and N2 in zeolite NaKA: an ab initio molecular dynamics approach. Phys. Chem. Chem. Phys. 16, 166–172 (2014).Article 
CAS 

Google Scholar 
Mace, A., Hedin, N. & Laaksonen, A. Role of ion mobility in molecular sieving of CO2 over N2 with zeolite NaKA. J. Phys. Chem. C 117, 24259–24267 (2013).Article 
CAS 

Google Scholar 
Yang, B., Liu, Y. & Li, M. Separation of CO2–N2 using zeolite NaKA with high selectivity. Chinese Chem. Lett. 27, 933–937 (2016).Article 
CAS 

Google Scholar 
Cheung, O. et al. K+ Exchanged zeolite ZK‑4 as a highly selective sorbent for CO2. Langmuir 30, 9682–9690 (2014).Article 
CAS 
PubMed 

Google Scholar 
Cheung, O. et al. Selective Adsorption of CO2 on Zeolites NaK-ZK‑4 with Si/Al of 1.8–2.8. ACS Omega 5, 25371–25380 (2020).Article 
CAS 

Google Scholar 
Akhtar, F., Liu, Q., Hedin, N. & Bergström, L. Strong and binder free structured zeolite sorbents with very high CO2-over-N2 selectivities and high capacities to adsorb CO2 rapidly. Energy Environ. Sci. 5, 7664–7673 (2012).Article 
CAS 

Google Scholar 
Li, J., Gao, M., Yan, W. & Yu, J. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chem. Sci. 14, 1935–1959 (2023).Article 
CAS 

Google Scholar 
Zhou, Y. et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science 373, 315–320 (2021).Article 
CAS 
PubMed 

Google Scholar 
Shang, J. et al. Determination of composition range for “molecular trapdoor” effect in chabazite zeolite. J. Phys. Chem. C 117, 12841–12847 (2013).Article 
CAS 

Google Scholar 
Li, G. et al. Temperature-regulated guest admission and release in microporous materials. Nat. Commun. 8, 15777 (2017).Article 
PubMed 

Google Scholar 
Choi, H. J. & Hong, S. B. Effect of framework Si/Al ratio on the mechanism of CO2 adsorption on the small-pore zeolite gismondine. Chem. Eng. J. 433, 133800 (2022).Article 
CAS 

Google Scholar 
Yang, J. et al. Adjusting the proportions of extra-framework K+ and Cs+ cations to construct a “molecular gate” on ZK-5 for CO2 removal. Microporous Mesoporous Mater. 268, 50–57 (2018).Article 
CAS 

Google Scholar 
Economides, M. J. & Wood, D. A. The state of natural gas. J. Nat. Gas Sci. Eng. 1, 1–13 (2009).Article 

Google Scholar 
Manek, V., Ghiaasiaan, S. M. & Patelczyk, J. Distillation based CO2 removal from natural gas for small and medium sized plant. IOP Conf. Ser. Mater. Sci. Eng. 755, 012052 (2020).Article 
CAS 

Google Scholar 
Andriani, D., Wresta, A., Atmaja, T. D. & Saepudin, A. A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl. Biochem. Biotechnol. 172, 1909–1928 (2014).Article 
CAS 

Google Scholar 
Qin, W., Egolfopoulos, F. N. & Tsotsis, T. T. Fundamental and environmental aspects of landfill gas utilization for power generation. Chem. Eng. J. 82, 157–172 (2001).Article 
CAS 

Google Scholar 
Palomino, M., Corma, A., Rey, F. & Valencia, S. New insights on CO2−methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs. Langmuir. 26, 1910–1917 (2010).Article 
CAS 

Google Scholar 
García, E. J. et al. Tuning the adsorption properties of zeolites as adsorbents for CO2 separation: best compromise between the working capacity and selectivity. Ind. Eng. Chem. Res. 53, 9860–9874 (2014).Article 

Google Scholar 
Lozinska, M. M. et al. Cation control of molecular sieving by flexible Li-containing zeolite Rho. J. Phys. Chem. C 120, 19652–19662 (2016).Article 
CAS 

Google Scholar 
Bacsik, Z., Cheung, O., Vasiliev, P. & Hedin, N. Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Applied Energy. 162, 613–621 (2016).Article 
CAS 

Google Scholar 
Cheung, O. et al. Highly selective uptake of carbon dioxide on the zeolite |Na10.2KCs0.8|-LTA—a possible sorbent for biogas upgrading. Phys. Chem. Chem. Phys. 18, 16080–16083 (2016).Article 
CAS 
PubMed 

Google Scholar 
Palomino, M., Corma, A., Jordá, J. L., Rey, F. & Valencia, S. Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chem. Commun. 48, 215–217 (2012).Article 
CAS 

Google Scholar 
Zhao, J. et al. Li+/ZSM-25 zeolite as a CO2 capture adsorbent with high selectivity and improved adsorption kinetics, showing CO2-induced framework expansion. J. Phys. Chem. C 122, 18933–18941 (2018).Article 
CAS 

Google Scholar 
Coudert, F.-X. & Kohen, D. Molecular insight into CO2 “trapdoor” adsorption in zeolite Na-RHO. Chem. Mater. 29, 2724–2730 (2017).Article 
CAS 

Google Scholar 
Lozinska, M. M. et al. Cation gating and relocation during the highly selective “trapdoor” adsorption of CO2 on univalent cation forms of zeolite Rho. Chem. Mater. 26, 2052–2061 (2014).Article 
CAS 

Google Scholar 
min, J. G., Kemp, K. C. & Hong, S. B. Zeolites ZSM-25 and PST-20: selective carbon dioxide adsorbents at high pressures. J. Phys. Chem. C 121, 3404–3409 (2017).Article 
CAS 

Google Scholar 
Guo, P. et al. A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature 524, 74–78 (2015).Article 
CAS 
PubMed 

Google Scholar 
Metz, B., Davidson, O., De Coninck, H., Loos, M. & Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge University Press, 2005).Mostafa, M., Antonicelli, C., Varela, C., Barletta, D. & Zondervan, E. Capturing CO2 from the atmosphere: design and analysis of a large-scale DAC facility. Carbon Capture Sci. Technol. 4, 100060 (2022).Article 
CAS 

Google Scholar 
Breyer, C., Fasihi, M., Bajamundi, C. & Creutzig, F. Direct air capture of CO2: a key technology for ambitious climate change mitigation. Joule. 3, 2053–2057 (2019).Article 

Google Scholar 
Kumar, A. et al. Direct air capture of CO2 by physisorbent materials. Angew. Chem. Int. Ed. 54, 14372–14377 (2015).Article 
CAS 

Google Scholar 
Custelcean, R. Direct air capture of CO2 via crystal engineering. Chem. Sci. 12, 12518–12528 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Bae, Y.-S. & Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50, 11586–11596 (2011).Article 
CAS 

Google Scholar 
Stuckert, A. N. & Yang, R. T. CO2 Capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15. Environ. Sci. Technol. 45, 10257–10264 (2011).Article 
CAS 
PubMed 

Google Scholar 
Tao, Z., Tian, Y., Ou, S. Y., Gu, Q. & Shang, J. Direct air capture of CO2 by metal cation-exchanged LTA zeolites: effect of the charge-to-size ratio of cations. AIChE J. 69, e18139 (2023).Article 
CAS 

Google Scholar 
Itadani, A. et al. Material exhibiting efficient CO2 adsorption at room temperature for concentrations lower than 1000 ppm: elucidation of the state of barium ion exchanged in an MFI-type zeolite. ACS Appl. Mater. Interfaces. 8, 8821–8833 (2016).Article 
CAS 

Google Scholar 
Liu, S. et al. Regulating extra-framework cations in faujasite zeolites for capture of trace carbon dioxide. Chem. Eur. J. 28, e202201659 (2022).Article 
CAS 
PubMed 

Google Scholar 
Oda, A. et al. Unprecedented CO2 adsorption behaviour by 5A-type zeolite discovered in lower pressure region and at 300 K. J. Mater. Chem. A 9, 7531–7545 (2021).Article 
CAS 

Google Scholar 
Fu, D., Park, Y. & Davis, M. E. Zinc containing small-pore zeolites for capture of low concentration carbon dioxide. Angew. Chem. Int. Ed. 61, e202112916 (2022).Article 
CAS 

Google Scholar 
Fu, D., Park, Y. & Davis, M. E. Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proc. Natl Acad. Sci. USA 119, e2211544119 (2022).Article 
CAS 

Google Scholar 
Xiang, X. et al. High adsorption capacity Fe@13X zeolite for direct air CO2 capture. Ind. Eng. Chem. Res. 62, 5420–5429 (2023).Article 
CAS 

Google Scholar 
Li, G., Xiao, P., Webley, P. A., Zhang, J. & Singh, R. Competition of CO2/H2O in adsorption based CO2 capture. Energy Procedia 1, 1123–1130 (2009).Article 
CAS 

Google Scholar 
Gao, F., Li, Y., Bian, Z., Hu, J. & Liu, H. Dynamic hydrophobic hindrance effect of zeolite@zeolitic imidazolate framework composites for CO2 capture in the presence of water. J. Mater. Chem. A 3, 8091–8097 (2015).Article 
CAS 

Google Scholar 
De Baerdemaeker, T. & De Vos, D. GAS SEPARATION Trapdoors in zeolites. Nat. Chem. 5, 89–90 (2013).Article 
PubMed 

Google Scholar 
Cavenati, S., Grande, C. A. & Rodrigues, A. E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49, 1095–1101 (2004).Article 
CAS 

Google Scholar 
Li, Y., Yi, H., Tang, X., Li, F. & Yuan, Q. Adsorption separation of CO2/CH4 gas mixture on the commercial zeolites at atmospheric pressure. Chem. Eng. J. 229, 50–56 (2013).Article 
CAS 

Google Scholar 
Pham, T. D. & Lobo, R. F. Adsorption equilibria of CO2 and small hydrocarbons in AEI-, CHA-, STT-, and RRO-type siliceous zeolites. Microporous Mesoporous Mater. 236, 100–108 (2016).Article 
CAS 

Google Scholar 
Du, T. et al. An optimal trapdoor zeolite for exclusive admission of CO2 at industrial carbon capture operating temperatures. Chem. Commun. 54, 3134–3137 (2018).Article 
CAS 

Google Scholar 
Wang, X. et al. The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO2 separation. Chem. Sci. 12, 8803–8810 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
De Baerdemaeker, T. & De Vos, D. Trapdoors in zeolites. Nat. Chem. 5, 89–90 (2013).Article 

Google Scholar 

Hot Topics

Related Articles