The $$^{146}\text{Sm}$$ half-life re-measured: consolidating the chronometer for events in the early Solar System

Rugel, G. et al. New Measurement of the \(^{60}\text{Fe}\) Half-Life. Phys. Rev. Lett. 103, 072502. https://doi.org/10.1103/PhysRevLett.103.072502 (2009).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wallner, A. et al. Settling the Half-Life of \(^{60}\text{Fe}\): Fundamental for a Versatile Astrophysical Chronometer. Phys. Rev. Lett. 114, 041101. https://doi.org/10.1103/PhysRevLett.114.041101 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ostdiek, K. M. et al. Activity measurement of \(^{60}\text{Fe}\) through the decay of \(^{60m}\text{Co}\) and confirmation of its half-life. Phys. Rev. C 95, 055809. https://doi.org/10.1103/PhysRevC.95.055809 (2017).Article 
ADS 

Google Scholar 
Jörg, G. et al. Preparation of radiochemically pure \(^{79}\text{Se}\) and highly precise determination of its half-life. Appl. Radiat. Isot. 68, 2339–2351. https://doi.org/10.1016/j.apradiso.2010.05.006 (2010).Article 
CAS 
PubMed 

Google Scholar 
Bienvenu, P. et al. A new determination of \(^{79}\text{Se}\) half-life. Appl. Radiat. Isot. 65, 355–364. https://doi.org/10.1016/j.apradiso.2006.09.009 (2007).Article 
CAS 
PubMed 

Google Scholar 
Kajan, I. et al. First direct determination of the \(^{93}\text{Mo}\) half-life. Sci. Rep. 11, 19788. https://doi.org/10.1038/s41598-021-99253-5 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Collé, R., Laureano-Perez, L. & Outola, I. A note on the half-life of \(^{209}\text{Po}\). Appl. Radiat. Isot. 65, 728–730. https://doi.org/10.1016/j.apradiso.2006.10.007 (2007).Article 
CAS 
PubMed 

Google Scholar 
Collé, R., Fitzgerald, R. P. & Laureano-Perez, L. A new determination of the \(^{209}\text{Po}\) half-life. J. Phys. G: Nucl. Part. Phys. 41, 105103. https://doi.org/10.1088/0954-3899/41/10/105103 (2014).Article 
ADS 
CAS 

Google Scholar 
Pommé, S., Stroh, H. & Benedik, L. Confirmation of 20% error in the \(^{209}\text{Po}\) half-life. Appl. Radiat. Isot. 97, 84–86. https://doi.org/10.1016/j.apradiso.2014.12.025 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wasserburg, G. J., Busso, M., Gallino, R. & Nollett, K. M. Short-lived nuclei in the early Solar System: Possible AGB sources. Nucl. Phys. A 777, 5–69. https://doi.org/10.1016/j.nuclphysa.2005.07.015 (2006).Article 
ADS 
CAS 

Google Scholar 
Lawson, T. V. et al. Radioactive nuclei in the early Solar system: analysis of the 15 isotopes produced by core-collapse supernovae. Mon. Not. R. Astron. Soc. 511, 886–902. https://doi.org/10.1093/mnras/stab3684 (2022).Article 
ADS 
CAS 

Google Scholar 
Davis, A. M. Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications. Annu. Rev. Nucl. Part. Sci. 72, 339–363. https://doi.org/10.1146/annurev-nucl-010722-074615 (2022).Article 
ADS 
CAS 

Google Scholar 
Boyet, M., & Carlson, R. W. \(^{142}\text{Nd}\) Evidence for Early (4.53 Ga) Global Differentiation of the Silicate Earth. Science 309, 576–581. https://doi.org/10.1126/science.1113634 (2005).Article 
ADS 
CAS 

Google Scholar 
Carlson, R. W., Boyet, M. & Horan, M. Chondrite barium, neodymium, and samarium isotopic heterogeneity and early earth differentiation. Science 316, 1175–1178. https://doi.org/10.1126/science.1140189 (2007).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Carlson, R. W. & Boyet, M. Short-lived radionuclides as monitors of early crust-mantle differentiation on the terrestrial planets. Earth Planet. Sci. Lett. 279, 147–156. https://doi.org/10.1016/j.epsl.2009.01.017 (2009).Article 
ADS 
CAS 

Google Scholar 
Caro, G. Early Silicate Earth Differentiation. Annu. Rev. Earth Planet. Sci. 39, 31–58. https://doi.org/10.1146/annurev-earth-040610-133400 (2011).Article 
ADS 
CAS 

Google Scholar 
Nyquist, L. & Shih, C.-Y. The isotopic record of lunar volcanism. Geochim. Cosmochim. Acta 56, 2213–2234. https://doi.org/10.1016/0016-7037(92)90185-L (1992).Article 
ADS 
CAS 

Google Scholar 
Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72. https://doi.org/10.1038/nature10328 (2011).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Borg, L. E. et al. Isotopic evidence for a young lunar magma ocean. Earth Planet. Sci. Lett. 523, 115706. https://doi.org/10.1016/j.epsl.2019.07.008 (2019).Article 
CAS 

Google Scholar 
Nyquist, L. et al. Ages and Geologic Histories of Martian Meteorites. Space Sci. Rev. 96, 105–164. https://doi.org/10.1023/A:1011993105172 (2001).Article 
ADS 
CAS 

Google Scholar 
Boyet, M., Carlson, R. W. & Horan, M. Old Sm-Nd ages for cumulate eucrites and redetermination of the solar system initial \(^{146}\text{Sm}\)/\(^{144}\text{Sm}\) ratio. Earth Planet. Sci. Lett. 291, 172–181. https://doi.org/10.1016/j.epsl.2010.01.010 (2010).Article 
ADS 
CAS 

Google Scholar 
Marks, N. E., Borg, L. E., Hutcheon, I. D., Jacobsen, B. & Clayton, R. N. Samarium-neodymium chronology and rubidium-strontium systematics of an Allende calcium-aluminum-rich inclusion with implications for \(^{146}\)Sm half-life. Earth Planet. Sci. Lett. 405, 15–24. https://doi.org/10.1016/j.epsl.2014.08.017 (2014).Article 
ADS 
CAS 

Google Scholar 
Lugaro, M. et al. Origin of the p-process radionuclides \(^{92}\text{Nb}\) and \(^{146}\text{Sm}\) in the early solar system and inferences on the birth of the Sun. Proc. Natl. Acad. Sci. 113, 907–912. https://doi.org/10.1073/pnas.1519344113 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kagami, S., Haba, M. K., Yokoyama, T., Usui, T. & Greenwood, R. C. Geochemistry and Sm-Nd chronology of a Stannern-group eucrite, Northwest Africa 7188. Meteorit. Planet. Sci. 54, 2710–2728. https://doi.org/10.1111/maps.13382 (2019).Article 
ADS 
CAS 

Google Scholar 
Friedman, A. M. et al. Alpha decay half lives of \(^{148}\)Gd \(^{150}\)Gd and \(^{146}\)Sm. Radiochim. Acta 5, 192–194. https://doi.org/10.1524/ract.1966.5.4.192 (1966).Article 
CAS 

Google Scholar 
Meissner, F., Schmidt-Ott, W. D. & Ziegeler, L. Half-life and \(\alpha\)-ray energy of \(^{146}\text{Sm}\). Zeitschrift für Physik A 327, 171–174. https://doi.org/10.1007/BF01292406 (1987).Article 
ADS 
CAS 

Google Scholar 
Kinoshita, N. et al. RETRACTED: A Shorter \(^{146}\text{Sm}\) Half-Life Measured and Implications for \(^{146}\text{Sm}\)-\(^{142}\text{Sm}\) Chronology in the Solar System. Science 335, 1614–1617. https://doi.org/10.1126/science.1215510 (2012).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Buck, B., Merchant, A. C. & Perez, S. M. Ground state to ground state alpha decays of heavy even-even nuclei. J. Phys. G: Nucl. Part. Phys. 17, 1223–1235. https://doi.org/10.1088/0954-3899/17/8/012 (1991).Article 
ADS 
CAS 

Google Scholar 
Buck, B., Merchant, A. & Perez, S. Half-Lives of Favored Alpha Decays from Nuclear Ground States. At. Data Nucl. Data Tables 54, 53–73. https://doi.org/10.1006/adnd.1993.1009 (1993).Article 
ADS 
CAS 

Google Scholar 
Royer, G. Analytic expressions for alpha-decay half-lives and potential barriers. Nucl. Phys. A 848, 279–291. https://doi.org/10.1016/j.nuclphysa.2010.09.009 (2010).Article 
ADS 
CAS 

Google Scholar 
Qian, Y., Ren, Z. & Ni, D. \(\alpha\)-decay half-lives in medium mass nuclei. J. Phys. G: Nucl. Part. Phys. 38, 015102. https://doi.org/10.1088/0954-3899/38/1/015102 (2011).Article 
ADS 
CAS 

Google Scholar 
Qian, Y. & Ren, Z. Half-lives of \(\alpha\) decay from natural nuclides and from superheavy elements. Phys. Lett. B 738, 87–91. https://doi.org/10.1016/j.physletb.2014.09.024 (2014).Article 
ADS 
CAS 

Google Scholar 
Bayrak, O. A new simple model for the \(\alpha\) -decay. J. Phys. G: Nucl. Part. Phys. 47, 025102. https://doi.org/10.1088/1361-6471/ab5885 (2020).Article 
ADS 
CAS 

Google Scholar 
El Batoul, A., Moumene, I. & Oulne, M. Systematics of alpha decay half-lives within the position-dependent mass formalism. Eur. Phys. J. A 57, 254. https://doi.org/10.1140/epja/s10050-021-00561-1 (2021).Article 
ADS 
CAS 

Google Scholar 
Koyuncu, F. A new potential model for alpha decay calculations. Nucl. Phys. A 1012, 122211. https://doi.org/10.1016/j.nuclphysa.2021.122211 (2021).Article 
CAS 

Google Scholar 
Xu, Y.-Y. et al. A unified formula for \(\alpha\) decay half-lives. Eur. Phys. J. A 58, 163. https://doi.org/10.1140/epja/s10050-022-00812-9 (2022).Article 
ADS 
CAS 

Google Scholar 
Tavares, O. A. P. & Terranova, M. L. A semiempirical evaluation of half-life of \(^{146}\text{Sm}\) isotope. Mod. Phys. Lett. A 38, 2350115. https://doi.org/10.1142/S0217732323501158 (2023).Article 
ADS 
CAS 

Google Scholar 
Zhu, X.-Y. et al. An improved simple model for the \(\alpha\) decay half-lives. Chin. Phys. Chttps://doi.org/10.1088/1674-1137/ad3d4b (2024) (Accepted manuscript).Fang, L. et al. Half-life and initial Solar System abundance of \(^{146}\text{Sm}\) determined from the oldest andesitic meteorite. Proc. Natl. Acad. Sci. 119, e2120933119. https://doi.org/10.1073/pnas.2120933119 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Villa, I. M. et al. IUPAC-IUGS recommendation on the half-lives of \(^{147}\text{Sm}\) and \(^{146}\text{Sm}\). Geochim. Cosmochim. Acta 285, 70–77. https://doi.org/10.1016/j.gca.2020.06.022 (2020).Article 
ADS 
CAS 

Google Scholar 
Sanborn, M. E., Carlson, R. W. & Wadhwa, M. \(^{147, 146}\text{Sm}\) – \(^{143, 142}\text{Nd}\), \(^{176}\text{Lu}\) – \(^{176}\text{Hf}\), and \(^{87}\text{Rb}\) – \(^{87}\text{Sr}\) systematics in the angrites: Implications for chronology and processes on the angrite parent body. Geochim. Cosmochim. Acta 171, 80–99. https://doi.org/10.1016/j.gca.2015.08.026 (2015).Article 
ADS 
CAS 

Google Scholar 
Kinoshita, N. et al. Retraction. Science 379, 1307–1307. https://doi.org/10.1126/science.adh7739 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Schumann, D. & Neuhausen, J. Accelerator waste as a source for exotic radionuclides. J. Phys. G: Nucl. Part. Phys. 35, 014046. https://doi.org/10.1088/0954-3899/35/1/014046 (2008).Article 
ADS 
CAS 

Google Scholar 
Schumann, D., Stowasser, T., Dressler, R. & Ayranov, M. Possibilities of preparation of exotic radionuclide samples at PSI for scientific investigations. Radiochim. Acta 101, 501–508. https://doi.org/10.1524/ract.2013.2058 (2013).Article 
CAS 

Google Scholar 
Chiera, N. M., Dressler, R., Sprung, P., Talip, Z. & Schumann, D. Determination of the half-life of gadolinium-148. Appl. Radiat. Isot. 194, 110708. https://doi.org/10.1016/j.apradiso.2023.110708 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chiera, N. M., Dressler, R., Sprung, P., Talip, Z. & Schumann, D. High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154. Sci. Rep. 12, 8988. https://doi.org/10.1038/s41598-022-12684-6 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dai, Y. et al. The second SINQ target irradiation program. STIP-II. J. Nucl. Mater. 343, 33–44. https://doi.org/10.1016/j.jnucmat.2005.01.027 (2005).Article 
ADS 
CAS 

Google Scholar 
Chiera, N. M., Talip, Z., Fankhauser, A. & Schumann, D. Separation and recovery of exotic radiolanthanides from irradiated tantalum targets for half-life measurements. PLoS ONE 15, e0235711. https://doi.org/10.1371/journal.pone.0235711 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vogl, J. & Pritzkow, W. Isotope dilution mass spectrometry—A primary method of measurement and its role for RM certification. Mapan 25, 135–164. https://doi.org/10.1007/s12647-010-0017-7 (2010).Article 

Google Scholar 
Hauswaldt, A.-L. et al. Uncertainty of standard addition experiments: a novel approach to include the uncertainty associated with the standard in the model equation. Accred. Qual. Assur. 17, 129–138. https://doi.org/10.1007/s00769-011-0827-5 (2012).Article 

Google Scholar 
Parker, W. & Falk, R. Molecular plating: a method for the electrolytic formation of thin inorganic films. Nucl. Inst. Methods 16, 355–357. https://doi.org/10.1016/0029-554X(62)90142-8 (1962).Article 
ADS 
CAS 

Google Scholar 
1, J. ISO/IEC Guide 98-3:2008: Uncertainty of measurement—Part 3: Guide to the expression of uncertainty in measurement (ISO/ICE 2008, 2008).Browne, E. & Tuli, J. K. Nuclear data sheets for A = 145. Nucl. Data Sheets 110, 507–680. https://doi.org/10.1016/j.nds.2009.02.001 (2009).Article 
ADS 
CAS 

Google Scholar 
Pommé, S., Fitzgerald, R. & Keightley, J. Uncertainty of nuclear counting. Metrologia 52, S3–S17. https://doi.org/10.1088/0026-1394/52/3/S3 (2015).Article 
ADS 
CAS 

Google Scholar 
Rytz, A. Recommended energy and intensity values of alpha particles from radioactive decay. At. Data Nucl. Data Tables 47, 205–239. https://doi.org/10.1016/0092-640X(91)90002-L (1991).Article 
ADS 
CAS 

Google Scholar 
Shollenberger, Q. R. et al. Chemical separation of \(^{146}\text{Sm}\) for half-life determination. J. Radioanal. Nucl. Chem. 331, 4963–4969. https://doi.org/10.1007/s10967-022-08531-7 (2022).Article 
CAS 

Google Scholar 
Kim, G. B. et al. Absolute Decay Counting of \(^{146}\text{Sm}\) and \(^{147}\text{Sm}\) for Early Solar System Chronology. J. Low Temp. Phys. 209, 824–831. https://doi.org/10.1007/s10909-022-02798-6 (2022).Article 
ADS 
CAS 

Google Scholar 
Dunlavey, D. C. & Seaborg, G. T. Alpha activity of Sm-146 as detected with nuclear emulsions. Phys. Rev. 92, 206–206. https://doi.org/10.1103/PhysRev.92.206 (1953).Article 
ADS 
CAS 

Google Scholar 
Nurmia, M. & Karras, M. THE USE OF Sm-146 IN AGE DETERMINATIONS. Geophysica 7, 83–90 (1960).
Google Scholar 
Friedman, A. M., Milsted, J. & Harkness, A. L. \(\alpha\)-decay half-lives of Gd-148, Gd-150, and Sm-146. Bull. Am. Phys. Soc. 8, 525 (1963).
Google Scholar 
Maugeri, E. A. et al. Preparation of \(^{7}\text{Be}\) targets for nuclear astrophysics research. J. Instrum. 12, P02016–P02016. https://doi.org/10.1088/1748-0221/12/02/P02016 (2017).Article 

Google Scholar 
Parker, W., Bildstein, H. & Getoff, N. Molecular plating III the rapid preparation of radioactive reference samples. Nucl. Inst. Methods 26, 314–316. https://doi.org/10.1016/0029-554X(64)90095-3 (1964).Article 
ADS 
CAS 

Google Scholar 
Pommé, S. & Caro Marroyo, B. Improved peak shape fitting in alpha spectra. Appl. Radiat. Isotop. 96, 148–153. https://doi.org/10.1016/j.apradiso.2014.11.023 (2015).Article 
CAS 

Google Scholar 
Russell, W. A., Papanastassiou, D. A. & Tombrello, T. A. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 1075–1090. https://doi.org/10.1016/0016-7037(78)90105-9 (1978).Article 
ADS 
CAS 

Google Scholar 
He, J., Yang, L., Hou, X., Mester, Z. & Meija, J. Determination of the Isotopic Composition of Gadolinium Using Multicollector Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 92, 6103–6110. https://doi.org/10.1021/acs.analchem.0c00531 (2020).Article 
CAS 
PubMed 

Google Scholar 
Chang, T.-L., Zhao, M.-T., Li, W.-J., Wang, J. & Qian, Q.-Y. Absolute isotopic composition and atomic weight of samarium. Int. J. Mass Spectrom. 218, 167–172. https://doi.org/10.1016/S1387-3806(02)00665-6 (2002).Article 
CAS 

Google Scholar 
Zhao, M., Zhou, T., Wang, J., Lu, H. & Xiang, F. Absolute measurements of neodymium isotopic abundances and atomic weight by MC-ICPMS. Int. J. Mass Spectrom. 245, 36–40. https://doi.org/10.1016/j.ijms.2005.06.006 (2005).Article 
CAS 

Google Scholar 
Brandon, A. D. et al. Re-evaluating \(^{142}\text{Nd}\)/\(^{144}\text{Nd}\) in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon. Geochim. Cosmochim. Acta 73, 6421–6445. https://doi.org/10.1016/j.gca.2009.07.015 (2009).Article 
ADS 
CAS 

Google Scholar 
Amelin, Y. & Merle, R. Isotopic analysis of potassium by total evaporation and incipient emission thermal ionisation mass spectrometry. Chem. Geol. 559, 119976. https://doi.org/10.1016/j.chemgeo.2020.119976 (2021).Article 
ADS 
CAS 

Google Scholar 
Wasserburg, G. J., Jacobsen, S. B., DePaolo, D. J., McCulloch, M. T. & Wen, T. Precise determination of SmNd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45, 2311–2323. https://doi.org/10.1016/0016-7037(81)90085-5 (1981).Article 
ADS 
CAS 

Google Scholar 
Wombacher, F. & Rehkämper, M. Investigation of the mass discrimination of multiple collector ICP-MS using neodymium isotopes and the generalised power law. J. Anal. At. Spectrom. 18, 1371–1375. https://doi.org/10.1039/B308403E (2003).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles