Low-level brain somatic mutations in exonic regions are collectively implicated in autism with germline mutations in autism risk genes

De Rubeis, S. & Buxbaum, J. D. Genetics and genomics of autism spectrum disorder: embracing complexity. Hum. Mol .Genet. 24, R24–R31 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Choi, L. & An, J. Y. Genetic architecture of autism spectrum disorder: Lessons from large-scale genomic studies. Neurosci. Biobehav. Rev. 128, 244–257, https://doi.org/10.1016/j.neubiorev.2021.06.028 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kim, I. B. et al. Non-coding de novo mutations in chromatin interactions are implicated in autism spectrum disorder. Mol. Psychiatry 27, 4680–4694, https://doi.org/10.1038/s41380-022-01697-2 (2022).Article 
CAS 
PubMed 

Google Scholar 
Ronald, A. et al. Genetic heterogeneity between the three components of the autism spectrum: a twin study. J. Am. Acad. Child Adolesc. Psychiatry 45, 691–699 (2006).Article 
PubMed 

Google Scholar 
Gaugler, T. et al. Most genetic risk for autism resides with common variation. Nat Genet 46, 881 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bai, D. et al. Association of genetic and environmental factors with autism in a 5-country cohort. JAMA Psychiatry 76, 1035–1043 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krumm, N. et al. Excess of rare, inherited truncating mutations in autism. Nat. Genet 47, 582 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gratten, J., Visscher, P. M., Mowry, B. J. & Wray, N. R. Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat. Genet 45, 234 (2013).Article 
CAS 
PubMed 

Google Scholar 
De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
O’Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet 43, 585 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Lim, E. T. et al. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat. Neurosci 20, 1217 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Poduri, A., Evrony, G. D., Cai, X. & Walsh, C. A. Somatic mutation, genomic variation, and neurological disease. Science 341, 1237758, https://doi.org/10.1126/science.1237758 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, J. H. Somatic mutations in disorders with disrupted brain connectivity. Exp. Mol. Med. 48, e239, https://doi.org/10.1038/emm.2016.53 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lim, J. S. et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat. Med. 21, 395–400, https://doi.org/10.1038/nm.3824 (2015).Article 
CAS 
PubMed 

Google Scholar 
Pelorosso, C. et al. Somatic double-hit in MTOR and RPS6 in hemimegalencephaly with intractable epilepsy. Hum. Mol. Genet (2019). https://doi.org/10.1093/hmg/ddz194Sim, N. S. et al. Precise detection of low-level somatic mutation in resected epilepsy brain tissue. Acta Neuropathol. 138, 901–912 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kim, M.-H. et al. Low-level brain somatic mutations are implicated in schizophrenia. Biol. Psychiatry 90, 35–46 (2021).Article 
CAS 
PubMed 

Google Scholar 
Park, J. S. et al. Brain somatic mutations observed in Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation. Nat. Commun. 10, 3090 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
D’Gama, A. M. et al. Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron 88, 910–917 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Freed, D. & Pevsner, J. The contribution of mosaic variants to autism spectrum disorder. PLoS Genet 12, e1006245 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Rodin, R. E. et al. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci. 24, 176–185 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sherman, M. A. et al. Large mosaic copy number variations confer autism risk. Nat. Neurosci. 24, 197–203 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, J. et al. The use of technical replication for detection of low-level somatic mutations in next-generation sequencing. Nat. Commun. 10, 1047 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Cibulskis, K. et al. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27, 2601–2602, https://doi.org/10.1093/bioinformatics/btr446 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shiraishi, Y. et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 41, e89–e89 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 (2013).Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinforma. 14, 178–192 (2013).Article 

Google Scholar 
Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. BioRxiv 201178 (2017).Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4, 36, https://doi.org/10.1186/2040-2392-4-36 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97, https://doi.org/10.1093/nar/gkw377 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, J. et al. Mutalisk: a web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures. Nucleic Acids Res. 46, W102–W108, https://doi.org/10.1093/nar/gky406 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Calderone, A., Castagnoli, L. & Cesareni, G. Mentha: a resource for browsing integrated protein-interaction networks. Nat Methods 10, 690 (2013).Article 
CAS 
PubMed 

Google Scholar 
Shohat, S., Ben-David, E. & Shifman, S. Varying intolerance of gene pathways to mutational classes explain genetic convergence across neuropsychiatric disorders. Cell Rep. 18, 2217–2227 (2017).Article 
CAS 
PubMed 

Google Scholar 
Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Krishnan, A. et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 19, 1454 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, J. H. et al. Analysis of low-level somatic mosaicism reveals stage and tissue-specific mutational features in human development. PLoS Genet 18, e1010404, https://doi.org/10.1371/journal.pgen.1010404 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet 48, 126–133, https://doi.org/10.1038/ng.3469 (2016).Article 
CAS 
PubMed 

Google Scholar 
Goldmann, J. M. et al. Parent-of-origin-specific signatures of de novo mutations. Nat. Genet 48, 935–939, https://doi.org/10.1038/ng.3597 (2016).Article 
CAS 
PubMed 

Google Scholar 
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122, https://doi.org/10.1186/s13059-016-0974-4 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet 46, 944 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894, https://doi.org/10.1093/nar/gky1016 (2019).Article 
CAS 
PubMed 

Google Scholar 
Pinto, D. et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am. J Hum. Genet. 94, 677–694 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Iwamoto, T. et al. Motor dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem 278, 16936–16940, https://doi.org/10.1074/jbc.C300075200 (2003).Article 
CAS 
PubMed 

Google Scholar 
Carapito, R. et al. A de novo ADCY5 mutation causes early-onset autosomal dominant chorea and dystonia. Mov. Disord. 30, 423–427, https://doi.org/10.1002/mds.26115 (2015).Article 
CAS 
PubMed 

Google Scholar 
Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 37, 353 (2005).Article 
CAS 
PubMed 

Google Scholar 
Long, J., LaPorte, P., Paylor, R. & Wynshaw‐Boris, A. Expanded characterization of the social interaction abnormalities in mice lacking Dvl1. Genes, Brain Behav 3, 51–62 (2004).Article 
CAS 
PubMed 

Google Scholar 
Moy, S. S. et al. Deficient NRG1-ERBB signaling alters social approach: relevance to genetic mouse models of schizophrenia. J Neurodev. Disord. 1, 302 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Stewart, A. et al. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT1A receptor-adenylyl cyclase axis. FASEB J 28, 1735–1744 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Coban-Akdemir, Z. et al. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am. J Hum. Genet 103, 171–187, https://doi.org/10.1016/j.ajhg.2018.06.009 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McKenzie, A. T. et al. Brain cell type specific gene expression and co-expression network architectures. Sci. Rep. 8, 1–19 (2018).Article 

Google Scholar 
Turner, T. N. et al. Genomic patterns of de novo mutation in simplex autism. Cell 171, 710–722 (2017). e712.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
RK, C. Y. et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611, https://doi.org/10.1038/nn.4524 (2017).Article 
CAS 

Google Scholar 
Yuen, R. K. et al. Genome-wide characteristics of de novo mutations in autism. NPJ Genom. Med. 1, 16027 (2016).Article 
PubMed Central 

Google Scholar 
Ding, J. et al. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types. Nat. Commun. 6, 8554, https://doi.org/10.1038/ncomms9554 (2015).Article 
CAS 
PubMed 

Google Scholar 
Courchesne, E. et al. Mapping early brain development in autism. Neuron 56, 399–413, https://doi.org/10.1016/j.neuron.2007.10.016 (2007).Article 
CAS 
PubMed 

Google Scholar 
Masuda, F. et al. Motor cortex excitability and inhibitory imbalance in autism spectrum disorder assessed with transcranial magnetic stimulation: a systematic review. Transl. Psychiatry 9, 110, https://doi.org/10.1038/s41398-019-0444-3 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Khan, S. et al. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale. Brain 138, 1394–1409, https://doi.org/10.1093/brain/awv043 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Tomasi, D. & Volkow, N. D. Reduced local and increased long-range functional connectivity of the thalamus in autism spectrum disorder. Cereb. Cortex 29, 573–585, https://doi.org/10.1093/cercor/bhx340 (2019).Article 
PubMed 

Google Scholar 
Schuetze, M. et al. Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology 41, 2627–2637, https://doi.org/10.1038/npp.2016.64 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Dougherty, J. D., Schmidt, E. F., Nakajima, M. & Heintz, N. Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. Nucleic Acids Res. 38, 4218–4230, https://doi.org/10.1093/nar/gkq130 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zikopoulos, B. & Barbas, H. Changes in prefrontal axons may disrupt the network in autism. J. Neurosci. 30, 14595–14609 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, Q. et al. Autism-associated CHD8 deficiency impairs axon development and migration of cortical neurons. Mol. Autism 9, 65, https://doi.org/10.1186/s13229-018-0244-2 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lazar, M., Miles, L. M., Babb, J. S. & Donaldson, J. B. Axonal deficits in young adults with High Functioning Autism and their impact on processing speed. NeuroImage: Clin 4, 417–425 (2014).Article 
PubMed 

Google Scholar 
Martínez‐Cerdeño, V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev. Neurobiol. 77, 393–404 (2017).Article 
PubMed 

Google Scholar 
Gouder, L. et al. Altered spinogenesis in iPSC-derived cortical neurons from patients with autism carrying de novo SHANK3 mutations. Sci. Rep. 9, 94, https://doi.org/10.1038/s41598-018-36993-x (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Willsey, A. J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997–1007, https://doi.org/10.1016/j.cell.2013.10.020 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gargus, J. J. Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann. N. Y. Acad. Sci. 1151, 133–156, https://doi.org/10.1111/j.1749-6632.2008.03572.x (2009).Article 
CAS 
PubMed 

Google Scholar 
Abekhoukh, S. & Bardoni, B. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front. Cell Neurosci. 8, 81, https://doi.org/10.3389/fncel.2014.00081 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
van Bon, B. W. et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol. Psychiatry 21, 126–132, https://doi.org/10.1038/mp.2015.5 (2016).Article 
CAS 
PubMed 

Google Scholar 
Langridge, A. T. et al. Maternal conditions and perinatal characteristics associated with autism spectrum disorder and intellectual disability. PLoS One 8, e50963, https://doi.org/10.1371/journal.pone.0050963 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guilmatre, A. et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch. Gen. Psychiatry 66, 947–956, https://doi.org/10.1001/archgenpsychiatry.2009.80 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berkel, S. et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. Genet 42, 489–491, https://doi.org/10.1038/ng.589 (2010).Article 
CAS 
PubMed 

Google Scholar 
Alesi, V. et al. 335.4 kb microduplication in chromosome band Xp11.2p11.3 associated with developmental delay, growth retardation, autistic disorder and dysmorphic features. Gene 505, 384–387, https://doi.org/10.1016/j.gene.2012.05.031 (2012).Article 
CAS 
PubMed 

Google Scholar 
Pyhälä, R. et al. Very low birth weight, infant growth, and autism-spectrum traits in adulthood. Pediatrics 134, 1075–1083 (2014).Article 
PubMed 

Google Scholar 
Lampi, K. M. et al. Risk of autism spectrum disorders in low birth weight and small for gestational age infants. J. Pediatr. 161, 830–836, https://doi.org/10.1016/j.jpeds.2012.04.058 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Werling, D. M. et al. Whole-Genome and RNA sequencing reveal variation and transcriptomic coordination in the developing human prefrontal cortex. Cell Rep. 31, 107489, https://doi.org/10.1016/j.celrep.2020.03.053 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
de la Torre-Ubieta, L., Won, H., Stein, J. L. & Geschwind, D. H. Advancing the understanding of autism disease mechanisms through genetics. Nat. Med. 22, 345 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Lee, K. W. et al. Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J Neurosci. 22, 7931–7940 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garcez, P. P. et al. Cenpj/CPAP regulates progenitor divisions and neuronal migration in the cerebral cortex downstream of Ascl1. Nat. Commun 6, 6474, https://doi.org/10.1038/ncomms7474 (2015).Article 
CAS 
PubMed 

Google Scholar 
Rosso, S. B., Sussman, D., Wynshaw-Boris, A. & Salinas, P. C. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat. Neurosci. 8, 34 (2005).Article 
CAS 
PubMed 

Google Scholar 
Rosso, S. B. & Inestrosa, N. C. WNT signaling in neuronal maturation and synaptogenesis. Front. Cell Neurosci. 7, 103 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mahar, I. et al. Subchronic peripheral neuregulin-1 increases ventral hippocampal neurogenesis and induces antidepressant-like effects. PLoS One 6, e26610, https://doi.org/10.1371/journal.pone.0026610 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mahar, I. et al. Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of immature neurons along the septotemporal axis. Sci. Rep. 6, 30467, https://doi.org/10.1038/srep30467 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Luo, Z. et al. Regulator of G protein Signaling 6 (RGS6) suppresses late-age-onset Nigral Dopaminergic Neurodegeneration, α-Synuclein accumulation and motor dysfunction. FASEB J. 33, 669.669–669.669 (2019).Article 

Google Scholar 
Bristow, J. M., Reno, T. A., Jo, M., Gonias, S. L. & Klemke, R. L. Dynamic phosphorylation of tyrosine 665 in pseudopodium-enriched atypical kinase 1 (PEAK1) is essential for the regulation of cell migration and focal adhesion turnover. J. Biol. Chem. 288, 123–131 (2013).Article 
CAS 
PubMed 

Google Scholar 
Reiner, O., Karzbrun, E., Kshirsagar, A. & Kaibuchi, K. Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J. Neurochem. 136, 440–456 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wegiel, J. et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta. Neuropathol. 119, 755–770 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Goubert, E. et al. Inhibition of the mitochondrial glutamate carrier SLC25A22 in astrocytes leads to intracellular glutamate accumulation. Front Cell Neurosci. 11, 149, https://doi.org/10.3389/fncel.2017.00149 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Napolioni, V., Persico, A. M., Porcelli, V. & Palmieri, L. The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol. Neurobiol. 44, 83–92, https://doi.org/10.1007/s12035-011-8192-2 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z., Tian, C., Dhamala, M. & Liu, Z. A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network. Sci. Rep. 7, 561 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Petrelli, F., Pucci, L. & Bezzi, P. Astrocytes and microglia and their potential link with autism spectrum disorders. Front Cell Neurosci. 10, 21 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Shi, W. et al. Reliability of whole-exome sequencing for assessing intratumor genetic heterogeneity. Cell Rep. 25, 1446–1457, https://doi.org/10.1016/j.celrep.2018.10.046 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, H. et al. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol. Autism 9, 64, https://doi.org/10.1186/s13229-018-0247-z (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pinero, J. et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839, https://doi.org/10.1093/nar/gkw943 (2017).Article 
CAS 
PubMed 

Google Scholar 
The Gene Ontology, C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338, https://doi.org/10.1093/nar/gky1055 (2019).Article 
CAS 

Google Scholar 
Kohler, S. et al. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res. 47, D1018–D1027, https://doi.org/10.1093/nar/gky1105 (2019).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles