The catalytic asymmetric polyene cyclization of homofarnesol to ambrox

Yoder, R. A. & Johnston, J. N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 105, 4730–4756 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006).Article 
CAS 
PubMed 

Google Scholar 
Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ishihara, K., Nakamura, S. & Yamamoto, H. The first enantioselective biomimetic cyclization of polyprenoids. J. Am. Chem. Soc. 121, 4906–4907 (1999).Article 
CAS 

Google Scholar 
Schäfer, B. Ambrox®. Chem. Unserer Zeit 45, 374–388 (2011).Article 

Google Scholar 
Ungarean, C. N., Southgate, E. H. & Sarlah, D. Enantioselective polyene cyclizations. Org. Biomol. Chem. 14, 5454–5467 (2016).Article 
CAS 
PubMed 

Google Scholar 
Eichhorn, E. & Schroeder, F. From ambergris to (−)-ambrox: chemistry meets biocatalysis for sustainable (−)-ambrox production. J. Agric. Food Chem. 71, 5042–5052 (2023).Article 
CAS 
PubMed 

Google Scholar 
Stork, G. & Burgstahler, A. W. The stereochemistry of polyene cyclization. J. Am. Chem. Soc. 77, 5068–5077 (1955).Article 
CAS 

Google Scholar 
Eschenmoser, A., Ruzicka, L., Jeger, O. & Arigoni, D. Zur Kenntnis der Triterpene. 190. Mitteilung. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. Helv. Chim. Acta 38, 1890–1904 (1955).Article 
CAS 

Google Scholar 
Eschenmoser, A. & Arigoni, D. Revisited after 50 years: the ‘stereochemical interpretation of the biogenetic isoprene rule for the triterpenes’. Helv. Chim. Acta 88, 3011–3050 (2005).Article 
CAS 

Google Scholar 
Wendt, K. U., Poralla, K. & Schulz, G. E. Structure and function of a squalene cyclase. Science 277, 1811–1815 (1997).Article 
CAS 
PubMed 

Google Scholar 
Wendt, K., Lenhart, A. & Schulz, G. The structure of the membrane protein squalene-hopene cyclase at 2.0 å resolution. J. Mol. Biol. 286, 175–187 (1999).Article 
CAS 
PubMed 

Google Scholar 
Reinert, D. J., Balliano, G. & Schulz, G. E. Conversion of squalene to the pentacarbocyclic hopene. Chem. Biol. 11, 121–126 (2004).Article 
CAS 
PubMed 

Google Scholar 
Johnson, W. S. Nonenzymic biogenetic-like olefinic cyclizations. Acc. Chem. Res. 1, 1–8 (1968).Article 

Google Scholar 
Wendt, K. U., Schulz, G. E., Corey, E. J. & Liu, D. R. Enzyme Mechanisms for Polycyclic Triterpene Formation. Angew. Chem. Int. Ed. 39, 2812–2833 (2000).Article 
ADS 
CAS 

Google Scholar 
Ohloff, G. in Riechstoffe und Geruchssinn 209–214 (Springer, 1990).Ohloff, G., Schulte‐Elte, K. H. & Müller, B. L. Formation of ambergris odorants from ambrein under simulated natural conditions. Helv. Chim. Acta 60, 2763–2766 (1977).Article 
CAS 

Google Scholar 
Ohloff, G., Winter, B. & Fehr, C. in Perfumes (eds Müller, P. M. & Lamparsky, D.) 289–296 (Springer, 1994).Ohloff, G., Giersch, W., Pickenhagen, W., Furrer, A. & Frei, B. Significance of the geminal dimethyl group in the odor principle of Ambrox®. Helv. Chim. Acta 68, 2022–2029 (1985).Article 
CAS 

Google Scholar 
Escher, S., Giersch, W., Niclass, Y., Bernardinelli, G. & Ohloff, G. Configuration‐odor relationships in 5β‐ambrox. Helv. Chim. Acta 73, 1935–1947 (1990).Article 
CAS 

Google Scholar 
Ohloff, G. in Gustation and Olfaction (eds Ohloff, G. & Thomas, A. F.) 178−183 (Academic Press, 1971).Rossiter, K. J. Structure−odor relationships. Chem. Rev. 96, 3201–3240 (1996).Article 
CAS 
PubMed 

Google Scholar 
Hayase, K. & Igarashi, K. Method for producing (−)-ambroxan®. JP patent JP2009/060799 (2007).Breuer, M., Hörster, A. & Hauer, B. Biokatalytische herstellung von ambroxan. Int. patent WO2010/139719 (2009).Breuer, M. et al. Verfahren zur biokatalytischen cyclisierung von terpenen und darin einsetzbare cyclase-mutanten. Int. patent WO2012/066059 (2010).Breuer, M., Hörster, A. & Hauer, B. Biocatalytic production of ambroxan. US patent 2012/0135477 (2011).Eichhorn, E., Schilling, B., Wahler, D., Fourage, L. & Locher, E. Enzymes and applications thereof. Int. patent WO2016/170099 (2015).Moody, T. S., Miskelly, I. R. & Quinn, D. J. Squalene hopene cyclase and use thereof for producing ambroxan. Int. patent WO2018/157021 (2017).Eichhorn, E. et al. Biocatalytic process for (−)-ambrox production using squalene hopene cyclase. Adv. Synth. Catal. 360, 2339–2351 (2018).Article 
CAS 

Google Scholar 
Eichhorn, E. & Ullmann, C. Squalene hopene cyclase (SHC) variants. Int. patent WO2021/110848 (2021).Eichhorn, E., Hauer, B. & Schneider, A. SHC enzymes and enzyme variants. Int. patent WO2023/175123 (2023).Barrett, A., Ma, T.-K. & Mies, T. Recent developments in polyene cyclizations and their applications in natural product synthesis. Synthesis 51, 67–82 (2019).Article 
CAS 

Google Scholar 
Felix, R. J., Munro-Leighton, C. & Gagné, M. R. Electrophilic Pt(II) complexes: precision instruments for the initiation of transformations mediated by the cation–olefin reaction. Acc. Chem. Res. 47, 2319–2331 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Surendra, K. & Corey, E. J. Highly enantioselective proton-initiated polycyclization of polyenes. J. Am. Chem. Soc. 134, 11992–11994 (2012).Article 
CAS 
PubMed 

Google Scholar 
Sakakura, A., Ukai, A. & Ishihara, K. Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites. Nature 445, 900–903 (2007).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ishihara, K., Ishibashi, H. & Yamamoto, H. Enantio- and diastereoselective stepwise cyclization of polyprenoids induced by chiral and achiral LBAs. A new entry to (−)-ambrox, (+)-podocarpa-8,11,13-triene diterpenoids, and (−)-tetracyclic polyprenoid of sedimentary origin. J. Am. Chem. Soc. 124, 3647–3655 (2002).Article 
CAS 
PubMed 

Google Scholar 
Snowden, R. L. et al. Internal nucleophilic termination in biomimetic acid mediated polyene cyclizations: stereochemical and mechanistic implications. Synthesis of (±)-ambrox and its diastereoisomers. J. Org. Chem. 57, 955–960 (1992).Article 
CAS 

Google Scholar 
Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhang, P., Tsuji, N., Ouyang, J. & List, B. Strong and confined acids catalyze asymmetric intramolecular hydroarylations of unactivated olefins with indoles. J. Am. Chem. Soc. 143, 675–680 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Maji, R. et al. A catalytic asymmetric hydrolactonization. J. Am. Chem. Soc. 145, 8788–8793 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Properzi, R. et al. Catalytic enantiocontrol over a non-classical carbocation. Nat. Chem. 12, 1174–1179 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wakchaure, V. N. et al. Catalytic asymmetric cationic shifts of aliphatic hydrocarbons. Nature 625, 287–292 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kaib, P. S. J., Schreyer, L., Lee, S., Properzi, R. & List, B. Extremely active organocatalysts enable a highly enantioselective addition of allyltrimethylsilane to aldehydes. Angew. Chem. Int. Ed. 55, 13200–13203 (2016).Article 
CAS 

Google Scholar 
Schreyer, L., Properzi, R. & List, B. IDPi catalysis. Angew. Chem. Int. Ed. 58, 12761–12777 (2019).Article 
CAS 

Google Scholar 
Cheng, J. K., Xiang, S. & Tan, B. Imidodiphosphorimidates (IDPis): catalyst motifs with unprecedented reactivity and selectivity. Chin. J. Chem. 41, 685–694 (2023).Article 
ADS 
CAS 

Google Scholar 
Arnold, A. M. et al. Enzyme-like polyene cyclizations catalyzed by dynamic, self-assembled, supramolecular fluoro alcohol-amine clusters. Nat. Commun. 14, 813 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Arnold, A. M., Pöthig, A., Drees, M. & Gulder, T. NXS, Morpholine, and HFIP: the ideal combination for biomimetic haliranium-induced polyene cyclizations. J. Am. Chem. Soc. 140, 4344–4353 (2018).Article 
CAS 
PubMed 

Google Scholar 
Tao, Z., Robb, K. A., Zhao, K. & Denmark, S. E. Enantioselective, Lewis base-catalyzed sulfenocyclization of polyenes. J. Am. Chem. Soc. 140, 3569–3573 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berkessel, A., Adrio, J. A., Hüttenhain, D. & Neudörfl, J. M. Unveiling the “booster effect” of fluorinated alcohol solvents: aggregation-induced conformational changes and cooperatively enhanced H-bonding. J. Am. Chem. Soc. 128, 8421–8426 (2006).Article 
CAS 
PubMed 

Google Scholar 
Tian, Y., Xu, X., Zhang, L. & Qu, J. Tetraphenylphosphonium tetrafluoroborate/1,1,1,3,3,3-hexafluoroisopropanol (Ph4PBF4/HFIP) effecting epoxide-initiated cation-olefin polycyclizations. Org. Lett. 18, 268–271 (2016).Article 
CAS 
PubMed 

Google Scholar 
Colomer, I., Chamberlain, A. E. R., Haughey, M. B. & Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1, 0088 (2017).Article 
CAS 

Google Scholar 
Motiwala, H. F. et al. HFIP in organic synthesis. Chem. Rev. 122, 12544–12747 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kaib, P. & List, B. Highly acidic BINOL-derived phosphoramidimidates and their application in the Brønsted acid catalyzed synthesis of α-tocopherol. Synlett 27, 156–158 (2015).Article 

Google Scholar 
Schelwies, M., Paciello, R., Pelzer, R., Siegel, W. & Breuer, M. Palladium-catalyzed low pressure carbonylation of allylic alcohols by catalytic anhydride activation. Chem. Eur. J. 27, 9263–9266 (2021).Article 
CAS 
PubMed 

Google Scholar 
Singleton, D. A. & Thomas, A. A. High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance. J. Am. Chem. Soc. 117, 9357–9358 (1995).Article 
CAS 

Google Scholar 
Beno, B. R., Houk, K. N. & Singleton, D. A. Synchronous or asynchronous? An “experimental” transition state from a direct comparison of experimental and theoretical kinetic isotope effects for a Diels–Alder reaction. J. Am. Chem. Soc. 118, 9984–9985 (1996).Article 
CAS 

Google Scholar 
Nguyen, H. & Gagné, M. R. Enantioselective cascade cyclization/protodemetalation of polyenes with N3Pt2+ catalysts. ACS Catal. 4, 855–859 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles