Activity versus stability of atomically dispersed transition-metal electrocatalysts

Abbasi, R. et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 31, 1805876 (2019).Article 

Google Scholar 
Cullen, D. A. et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021).Article 
CAS 

Google Scholar 
Weber, A. Z., Balasubramanian, S. & Das, P. K. in Advances in Chemical Engineering (ed. Sundmacher, K.) Vol. 41, 65–144 (Academic Press, 2012).Wang, X. X., Swihart, M. T. & Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019).Article 
CAS 

Google Scholar 
Thompson, S. T. et al. ElectroCat: DOE’s approach to PGM-free catalyst and electrode R&D. Solid State Ion. 319, 68–76 (2018).Article 
CAS 

Google Scholar 
Kramm, U. I. et al. On an easy way to prepare metal–nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 138, 635–640 (2016).Article 
CAS 
PubMed 

Google Scholar 
Jaouen, F. & Dodelet, J.-P. O2 reduction mechanism on non-noble metal catalysts for PEM fuel cells. Part I: experimental rates of O2 electroreduction, H2O2 electroreduction, and H2O2 disproportionation. J. Phys. Chem. C 113, 15422–15432 (2009).Article 
CAS 

Google Scholar 
Leonard, N. D. et al. Deconvolution of utilization, site density, and turnover frequency of Fe–nitrogen–carbon oxygen reduction reaction catalysts prepared with secondary N-precursors. ACS Catal. 8, 1640–1647 (2018).Article 
CAS 

Google Scholar 
He, Y., Liu, S., Priest, C., Shi, Q. & Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49, 3484–3524 (2020).Article 
CAS 
PubMed 

Google Scholar 
He, Y. & Wu, G. PGM-free oxygen-reduction catalyst development for proton-exchange membrane fuel cells: challenges, solutions, and promises. Acc. Mater. Res. 3, 224–236 (2022).Article 
CAS 

Google Scholar 
Gewirth, A. A., Varnell, J. A. & DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 118, 2313–2339 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhang, H. et al. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 12, 2548–2558 (2019).Article 
CAS 

Google Scholar 
Wang, X. X. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018).Article 

Google Scholar 
Li, J. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018).Article 
CAS 

Google Scholar 
Zhang, H. et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139, 14143–14149 (2017).Article 
CAS 
PubMed 

Google Scholar 
Wu, G. et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29, 83–110 (2016).Article 
CAS 

Google Scholar 
Chen, M., He, Y., Spendelow, J. S. & Wu, G. Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Lett. 4, 1619–1633 (2019).Article 
CAS 

Google Scholar 
Chen, G. et al. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy Environ. Sci. 15, 2619–2628 (2022).Article 
CAS 

Google Scholar 
Uddin, A. et al. High power density platinum group metal-free cathodes for polymer electrolyte fuel cells. ACS Appl. Mater. Interfaces 12, 2216–2224 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhang, S., Qin, Y., Ding, S. & Su, Y. A DFT study on the activity origin of Fe−N−C sites for oxygen reduction reaction. ChemPhysChem 23, e202200165 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kattel, S. & Wang, G. A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe, Co, or Ni) clusters between graphitic pores. J. Mater. Chem. A 1, 10790–10797 (2013).Article 
CAS 

Google Scholar 
Liu, K., Wu, G. & Wang, G. Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction. J. Phys. Chem. C 121, 11319–11324 (2017).Article 
CAS 

Google Scholar 
Zhao, X., Levell, Z. H., Yu, S. & Liu, Y. Atomistic understanding of two-dimensional electrocatalysts from first principles. Chem. Rev. 122, 10675–10709 (2022).Article 
CAS 
PubMed 

Google Scholar 
Holby, E. F., Wang, G. & Zelenay, P. Acid stability and demetalation of PGM-free ORR electrocatalyst structures from density functional theory: a model for ‘single-atom catalyst’ dissolution. ACS Catal. 10, 14527–14539 (2020).Article 
CAS 

Google Scholar 
Li, J. et al. Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2021).Article 

Google Scholar 
Liu, S. et al. Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 7, 652–663 (2022).Article 
CAS 

Google Scholar 
Liu, S., Shi, Q. & Wu, G. Solving the activity–stability trade-off riddle. Nat. Catal. 4, 6–7 (2021).Article 

Google Scholar 
Zhu, Y. et al. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 10, 1902844 (2020).Article 
CAS 

Google Scholar 
Wang, Y. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 120, 12217–12314 (2020).Article 
CAS 
PubMed 

Google Scholar 
Li, B. et al. Unraveling the mechanism of ligands regulating electronic structure of MN4 sites with optimized ORR catalytic performance. Appl. Surf. Sci. 595, 153526 (2022).Article 
CAS 

Google Scholar 
Zhang, X. et al. Towards understanding ORR activity and electron-transfer pathway of M-Nx/C electro-catalyst in acidic media. J. Catal. 356, 229–236 (2017).Article 
CAS 

Google Scholar 
Martinez, U., Komini Babu, S., Holby, E. F. & Zelenay, P. Durability challenges and perspective in the development of PGM-free electrocatalysts for the oxygen reduction reaction. Curr. Opin. Electrochem. 9, 224–232 (2018).Article 
CAS 

Google Scholar 
Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011).Article 
CAS 
PubMed 

Google Scholar 
Tylus, U. et al. Elucidating oxygen reduction active sites in pyrolyzed metal–nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 118, 8999–9008 (2014).Article 
CAS 

Google Scholar 
Artyushkova, K., Serov, A., Rojas-Carbonell, S. & Atanassov, P. Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal–nitrogen–carbon electrocatalysts. J. Phys. Chem. C 119, 25917–25928 (2015).Article 
CAS 

Google Scholar 
Workman, M. J., Serov, A., Tsui, L.-K., Atanassov, P. & Artyushkova, K. Fe–N–C catalyst graphitic layer structure and fuel cell performance. ACS Energy Lett. 2, 1489–1493 (2017).Article 
CAS 

Google Scholar 
Matter, P. H., Zhang, L. & Ozkan, U. S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 239, 83–96 (2006).Article 
CAS 

Google Scholar 
Hou, X., Hu, Q., Zhang, P. & Mi, J. Oxygen reduction reaction on nitrogen-doped graphene nanoribbons: a density functional theory study. Chem. Phys. Lett. 663, 123–127 (2016).Article 
CAS 

Google Scholar 
Zhang, P., Lian, J. S. & Jiang, Q. Potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes: a density functional theory study. Phys. Chem. Chem. Phys. 14, 11715–11723 (2012).Article 
CAS 
PubMed 

Google Scholar 
Kundu, S. et al. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C 113, 14302–14310 (2009).Article 
CAS 

Google Scholar 
Morozan, A. et al. Metal-free nitrogen-containing carbon nanotubes prepared from triazole and tetrazole derivatives show high electrocatalytic activity towards the oxygen reduction reaction in alkaline media. ChemSusChem 5, 647–651 (2012).Article 
CAS 
PubMed 

Google Scholar 
Matter, P. H. & Ozkan, U. S. Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 109, 115–123 (2006).Article 
CAS 

Google Scholar 
Mehmood, A. et al. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 5, 311–323 (2022).Article 
CAS 

Google Scholar 
Shi, Q. et al. Supported and coordinated single metal site electrocatalysts. Mater. Today 37, 93–111 (2020).Article 
CAS 

Google Scholar 
Mineva, T. et al. Understanding active sites in pyrolyzed Fe–N–C catalysts for fuel cell cathodes by bridging density functional theory calculations and 57Fe Mössbauer spectroscopy. ACS Catal. 9, 9359–9371 (2019).Article 
CAS 

Google Scholar 
Li, J. et al. Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ. Sci. 9, 2418–2432 (2016).Article 
CAS 

Google Scholar 
Zhang, N. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 13, 111–118 (2020).Article 
CAS 

Google Scholar 
Liu, K. et al. Mn- and N-doped carbon as promising catalysts for oxygen reduction reaction: theoretical prediction and experimental validation. Appl. Catal. B Environ. 243, 195–203 (2019).Article 
CAS 

Google Scholar 
Menga, D., Guilherme Buzanich, A., Wagner, F. & Fellinger, T.-P. Evaluation of the specific activity of M−N−Cs and the intrinsic activity of tetrapyrrolic FeN4 sites for the oxygen reduction reaction. Angew. Chem. Int. Ed. 61, e202207089 (2022).Article 
CAS 

Google Scholar 
Qin, Y., Li, P., Li, Z., Wu, T. & Su, Y. Potential-dependent oxygen reduction on FeN4 under explicit solvation environment. J. Phys. Chem. C 127, 4934–4941 (2023).Article 
CAS 

Google Scholar 
Kattel, S. & Wang, G. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 5, 452–456 (2014).Article 
CAS 
PubMed 

Google Scholar 
Yu, S., Levell, Z., Jiang, Z., Zhao, X. & Liu, Y. What is the rate-limiting step of oxygen reduction reaction on Fe–N–C catalysts? J. Am. Chem. Soc. 145, 25352–25356 (2023).Article 
CAS 
PubMed 

Google Scholar 
Loyola, C. Z. et al. Insights into the electronic structure of Fe penta-coordinated complexes. Spectroscopic examination and electrochemical analysis for the oxygen reduction and oxygen evolution reactions. J. Mater. Chem. A 9, 23802–23816 (2021).Article 
CAS 

Google Scholar 
Zagal, J. H., Specchia, S. & Atanassov, P. Mapping transition metal-MN4 macrocyclic complex catalysts performance for the critical reactivity descriptors. Curr. Opin. Electrochem. 27, 100683 (2021).Article 
CAS 

Google Scholar 
Jiao, L. et al. Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nat. Mater. 20, 1385–1391 (2021).Article 
CAS 
PubMed 

Google Scholar 
He, Y. et al. Dynamically unveiling metal–nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites. Angew. Chem. Int. Ed.60, 9516–9526 (2021).Article 
CAS 

Google Scholar 
Li, J. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. Int. Ed. 58, 18971–18980 (2019).Article 
CAS 

Google Scholar 
Mohd Adli, N. et al. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction. Angew. Chem. Int. Ed. 60, 1022–1032 (2021).Article 
CAS 

Google Scholar 
Li, Y. et al. Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy Environ. Sci. 15, 2108–2119 (2022).Article 
CAS 

Google Scholar 
Yang, X. et al. Binary atomically dispersed metal-site catalysts with core−shell nanostructures for O2 and CO2 reduction reactions. Small Sci. 1, 2100046 (2021).Article 
CAS 

Google Scholar 
Bates, J. S. et al. Molecular catalyst synthesis strategies to prepare atomically dispersed Fe–N–C heterogeneous catalysts. J. Am. Chem. Soc. 144, 18797–18802 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, M.-Q. et al. Pyrolyzed Fe–N–C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal. 4, 3928–3936 (2014).Article 
CAS 

Google Scholar 
Wu, G. et al. Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J. Mater. Chem. 21, 11392–11405 (2011).Article 
CAS 

Google Scholar 
He, Y. et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019).Article 
CAS 

Google Scholar 
Wang, X. X., Prabhakaran, V., He, Y., Shao, Y. & Wu, G. Iron-free cathode catalysts for proton-exchange-membrane fuel cells: cobalt catalysts and the peroxide mitigation approach. Adv. Mater. 31, 1805126 (2019).Article 

Google Scholar 
Dodelet, J.-P. Layer of stability. Nat. Energy 7, 578–579 (2022).Article 

Google Scholar 
Menga, D. et al. Resolving the dilemma of Fe–N–C catalysts by the selective synthesis of tetrapyrrolic active sites via an imprinting strategy. J. Am. Chem. Soc. 143, 18010–18019 (2021).Article 
CAS 
PubMed 

Google Scholar 
Vinogradov, K. Y. et al. Density functional theory study of the oxygen reduction reaction mechanism on graphene doped with nitrogen and a transition metal. ACS Omega 7, 7066–7073 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kattel, S., Atanassov, P. & Kiefer, B. A density functional theory study of oxygen reduction reaction on non-PGM Fe–Nx–C electrocatalysts. Phys. Chem. Chem. Phys. 16, 13800–13806 (2014).Article 
CAS 
PubMed 

Google Scholar 
Li, Y. et al. Elucidating the role of P on Mn- and N-doped graphene catalysts in promoting oxygen reduction: density functional theory studies. SusMat 3, 390–401 (2023).Article 
CAS 

Google Scholar 
Resasco, J. et al. Enhancing the connection between computation and experiments in electrocatalysis. Nat. Catal. 5, 374–381 (2022).Article 

Google Scholar 
Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792–794 (2008).Article 
CAS 
PubMed 

Google Scholar 
Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).Article 

Google Scholar 
Hasan, M. H. & McCrum, I. T. Understanding the role of near-surface solvent in electrochemical adsorption and electrocatalysis with theory and experiment. Curr. Opin. Electrochem. 33, 100937 (2022).Article 
CAS 

Google Scholar 
Sebastián-Pascual, P., Shao-Horn, Y. & Escudero-Escribano, M. Toward understanding the role of the electric double layer structure and electrolyte effects on well-defined interfaces for electrocatalysis. Curr. Opin. Electrochem. 32, 100918 (2022).Article 

Google Scholar 
Shin, S.-J. et al. On the importance of the electric double layer structure in aqueous electrocatalysis. Nat. Commun. 13, 174 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Govindarajan, N., Xu, A. & Chan, K. How pH affects electrochemical processes. Science 375, 379–380 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhu, X., Huang, J. & Eikerling, M. pH effects in a model electrocatalytic reaction disentangled. JACS Au 3, 1052–1064 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, C.-X., Li, B.-Q., Liu, J.-N. & Zhang, Q. Intrinsic electrocatalytic activity regulation of M–N–C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 4448–4463 (2021).Article 
CAS 

Google Scholar 
Adabi, H. et al. High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 6, 834–843 (2021).Article 
CAS 

Google Scholar 
Sgarbi, R. et al. Oxygen reduction reaction mechanism and kinetics on M-NxCy and M@N-C active sites present in model M–N–C catalysts under alkaline and acidic conditions. J. Solid State Electrochem. 25, 45–56 (2021).Article 
CAS 

Google Scholar 
Rauf, M. et al. Insight into the different ORR catalytic activity of Fe/N/C between acidic and alkaline media: protonation of pyridinic nitrogen. Electrochem. Commun. 73, 71–74 (2016).Article 
CAS 

Google Scholar 
Yan, Z. et al. Nitrogen-doped bimetallic carbide-graphite composite as highly active and extremely stable electrocatalyst for oxygen reduction reaction in alkaline media. Adv. Funct. Mater. 32, 2204031 (2022).Article 
CAS 

Google Scholar 
Jiang, W.-J. et al. Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J. Am. Chem. Soc. 138, 3570–3578 (2016).Article 
CAS 
PubMed 

Google Scholar 
Lu, F. et al. Engineering FeN4 active sites onto nitrogen-rich carbon with tubular channels for enhanced oxygen reduction reaction performance. Appl. Catal. B Environ. 313, 121464 (2022).Article 
CAS 

Google Scholar 
Liu, F. et al. Manipulating the spin state to activate the atomically dispersed Fe–N–C catalyst for oxygen reduction. EES Catal. 1, 562–570 (2023).Article 
CAS 

Google Scholar 
Jia, Q. et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9, 12496–12505 (2015).Article 
CAS 
PubMed 

Google Scholar 
Choi, C. H. et al. Stability of Fe–N–C catalysts in acidic medium studied by operando spectroscopy. Angew. Chem. Int. Ed. 54, 12753–12757 (2015).Article 
CAS 

Google Scholar 
Xu, X. et al. Investigation on the demetallation of Fe–N–C for oxygen reduction reaction: the influence of structure and structural evolution of active site. Appl. Catal. B Environ. 309, 121290 (2022).Article 
CAS 

Google Scholar 
Chenitz, R. et al. A specific demetalation of Fe–N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells. Energy Environ. Sci. 11, 365–382 (2018).Article 
CAS 

Google Scholar 
Gao, Y. et al. New insight into effect of potential on degradation of Fe–N–C catalyst for ORR. Front. Energy 15, 421–430 (2021).Article 

Google Scholar 
Muñoz-Becerra, K., Venegas, R., Duque, L., Zagal, J. H. & Recio, F. J. Recent advances of Fe–N–C pyrolyzed catalysts for the oxygen reduction reaction. Curr. Opin. Electrochem. 23, 154–161 (2020).Article 

Google Scholar 
Chi, B. et al. Promoting ZIF-8-derived Fe–N–C oxygen reduction catalysts via Zr doping in proton exchange membrane fuel cells: durability and activity enhancements. ACS Catal. 13, 4221–4230 (2023).Article 
CAS 

Google Scholar 
Kiciński, W. et al. Binary transition metal doping to create efficient TM–N–C electrocatalysts and enhance ORR catalysis under an external magnetic field. J. Alloy Compd. 935, 168051 (2023).Article 

Google Scholar 
Toyao, T. et al. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal. 10, 2260–2297 (2020).Article 
CAS 

Google Scholar 
Yang, W., Fidelis, T. T. & Sun, W.-H. Machine learning in catalysis, from proposal to practicing. ACS Omega 5, 83–88 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).Article 

Google Scholar 
Zaera, F. In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions. J. Catal. 404, 900–910 (2021).Article 
CAS 

Google Scholar 
Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).Article 
CAS 
PubMed 

Google Scholar 
Lukashuk, L. & Foettinger, K. In situ and operando spectroscopy: a powerful approach towards understanding catalysts. Johns Matthey Technol. Rev. 62, 316–331 (2018).Article 
CAS 

Google Scholar 
Kort-Kamp, W. J. M. et al. Adaptive learning-driven high-throughput synthesis of oxygen reduction reaction Fe-N-C electrocatalysts. J. Power Sources 559, 232583 (2023).Article 
CAS 

Google Scholar 
Pillai, H. S. et al. Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat. Commun. 14, 792 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, S. H. et al. Design principle of Fe–N–C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 141, 2035–2045 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wei, J. et al. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe–N–C electrocatalysts by in situ Raman spectroscopy. ACS Catal. 12, 7811–7820 (2022).Article 
CAS 

Google Scholar 
Liang, W., Chen, J., Liu, Y. & Chen, S. Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal. 4, 4170–4177 (2014).Article 
CAS 

Google Scholar 
Kim, D. et al. Highly graphitic mesoporous Fe,N-doped carbon materials for oxygen reduction electrochemical catalysts. ACS Appl. Mater. Interfaces 10, 25337–25349 (2018).Article 
CAS 
PubMed 

Google Scholar 
Mamtani, K. et al. Evolution of N-coordinated iron–carbon (FeNC) catalysts and their oxygen reduction (ORR) performance in acidic media at various stages of catalyst synthesis: an attempt at benchmarking. Catal. Lett. 146, 1749–1770 (2016).Article 
CAS 

Google Scholar 
Yang, X.-D. et al. Modeling Fe/N/C catalysts in monolayer graphene. ACS Catal. 7, 139–145 (2017).Article 
CAS 

Google Scholar 
Proietti, E. et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).Article 
PubMed 

Google Scholar 
Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J.-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).Article 
PubMed 

Google Scholar 
Zhang, H. et al. Standardized protocols for evaluating platinum group metal-free oxygen reduction reaction electrocatalysts in polymer electrolyte fuel cells. Nat. Catal. 5, 455–462 (2022).Article 
CAS 

Google Scholar 
Herranz, J., Lefèvre, M., Larouche, N., Stansfield, B. & Dodelet, J.-P. Step-by-step synthesis of non-noble metal electrocatalysts for O2 reduction under proton exchange membrane fuel cell conditions. J. Phys. Chem. C 111, 19033–19042 (2007).Article 
CAS 

Google Scholar 
Shao, Y., Dodelet, J. P., Wu, G. & Zelenay, P. PGM-free cathode catalysts for PEM fuel cells: a mini-review on stability challenges. Adv. Mater. 31, e1807615 (2019).Article 
PubMed 

Google Scholar 
Hu, Y. et al. Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction. Electrochim. Acta 155, 335–340 (2015).Article 
CAS 

Google Scholar 
Guo, L. et al. Promoting atomically dispersed MnN4 sites via sulfur doping for oxygen reduction: unveiling intrinsic activity and degradation in fuel cells. ACS Nano 15, 6886–6899 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ding, S. et al. Engineering atomic single metal-FeN4Cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS Nano 16, 15165–15174 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. Boosting the oxygen reduction reaction behaviour of atomic Fe–N4 active sites in porous honeycomb-like carbon via P heteroatom doping. J. Mater. Chem. A 10, 18147–18155 (2022).Article 
CAS 

Google Scholar 
Li, B., Shi, C., Zhao, N. & Liu, E. Hydrogen-bond-promoted ORR mechanism in P-doped Fe–N–C materials. J. Phys. Chem. C 127, 1023–1031 (2023).Article 
CAS 

Google Scholar 
Yang, X., Priest, C., Hou, Y. & Wu, G. Atomically dispersed dual-metal-site PGM-free electrocatalysts for oxygen reduction reaction: opportunities and challenges. SusMat 2, 569–590 (2022).Article 
CAS 

Google Scholar 
Li, Y. et al. Atomically dispersed dual-metal site catalysts for enhanced CO2 reduction: mechanistic insight into active site structures. Angew. Chem. Int. Ed. 61, e202205632 (2022).Article 
CAS 

Google Scholar 
Jia, C. et al. Toward rational design of dual-metal-site catalysts: catalytic descriptor exploration. ACS Catal. 12, 3420–3429 (2022).Article 
CAS 

Google Scholar 
Li, Y., Wang, H., Yang, X., O’Carroll, T. & Wu, G. Designing and engineering atomically dispersed metal catalysts for CO2 to CO conversion: from single to dual metal sites. Angew. Chem. Int. Ed. 63, e202317884 (2024).Article 
CAS 

Google Scholar 
Feng, H. et al. Data-driven design of dual-metal-site catalysts for the electrochemical carbon dioxide reduction reaction. J. Mater. Chem. A 10, 18803–18811 (2022).Article 
CAS 

Google Scholar 
Brea, C. & Hu, G. Mechanistic insight into dual-metal-site catalysts for the oxygen reduction reaction. ACS Catal. 13, 4992–4999 (2023).Article 
CAS 

Google Scholar 
Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zeng, Y. et al. Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nat. Catal. 6, 1215–1227 (2023).Article 
CAS 

Google Scholar 
Liu, S. et al. Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts. Angew. Chem. Int. Ed. 59, 21698–21705 (2020).Article 
CAS 

Google Scholar 
Qiao, Z. et al. 3d polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Appl. Catal. B Environ. 219, 629–639 (2017).Article 
CAS 

Google Scholar 
Wang, W. et al. Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone. J. Mater. Chem. A 4, 12768–12773 (2016).Article 
CAS 

Google Scholar 
Li, W., Liu, J. & Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).Article 
CAS 

Google Scholar 
He, Y. et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 32, 2003577 (2020).Article 
CAS 

Google Scholar 
Wan, X. et al. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).Article 
CAS 

Google Scholar 
Chen, L. et al. Spatial porosity design of Fe–N–C catalysts for high power density PEM fuel cells and detection of water saturation of the catalyst layer by a microwave method. J. Mater. Chem. A 10, 7764–7772 (2022).Article 
CAS 

Google Scholar 
Shu, C. et al. Hierarchically mesoporous carbon spheres coated with a single atomic Fe–N–C layer for balancing activity and mass transfer in fuel cells. Carbon Energy 4, 1–11 (2022).Article 
CAS 

Google Scholar 
Serov, A., Artyushkova, K. & Atanassov, P. Fe–N–C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity. Adv. Energy Mater. 4, 1301735 (2014).Article 

Google Scholar 
Asset, T. & Atanassov, P. Iron–nitrogen–carbon catalysts for proton exchange membrane fuel cells. Joule 4, 33–44 (2020).Article 
CAS 

Google Scholar 
Ding, W. et al. Three-dimensional layered Fe-N/C catalysts built by electrospinning and the comparison of different active species on oxygen reduction reaction performance. J. Alloy Compd. 848, 156605 (2020).Article 
CAS 

Google Scholar 
Kabir, S. et al. Improving the bulk gas transport of Fe–N–C platinum group metal-free nanofiber electrodes via electrospinning for fuel cell applications. Nano Energy 73, 104791 (2020).Article 
CAS 

Google Scholar 
Li, Y. et al. Multiscale porous Fe–N–C networks as highly efficient catalysts for the oxygen reduction reaction. Nanoscale 11, 19506–19511 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wu, G. et al. Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans. 25, 1299 (2009).Article 

Google Scholar 
Beltrán, D. E. et al. Elucidation of performance recovery for Fe-based catalyst cathodes in fuel cells. Adv. Energy Sustain. Res. 2, 2100123 (2021).Article 

Google Scholar 
Yang, X. et al. Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Adv. Mater. 34, 2107954 (2022).Article 
CAS 

Google Scholar 
Xie, H. et al. Ta–TiOx nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nat. Energy 7, 281–289 (2022).Article 
CAS 

Google Scholar 
Saha, P. et al. Correlating the morphological changes to electrochemical performance during carbon corrosion in polymer electrolyte fuel cells. J. Mater. Chem. A 10, 12551–12562 (2022).Article 
CAS 

Google Scholar 
Specchia, S., Atanassov, P. & Zagal, J. H. Mapping transition metal–nitrogen–carbon catalyst performance on the critical descriptor diagram. Curr. Opin. Electrochem. 27, 100687 (2021).Article 
CAS 

Google Scholar 
Fu, H. et al. Machine-learning-assisted optimization of a single-atom coordination environment for accelerated Fenton catalysis. ACS Nano 17, 13851–13860 (2023).Article 
CAS 
PubMed 

Google Scholar 
Sun, H. et al. High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine learning. J. Energy Chem. 81, 349–357 (2023).Article 
CAS 

Google Scholar 
Kumar, K. et al. Fe–N–C electrocatalysts’ durability: effects of single atoms’ mobility and clustering. ACS Catal. 11, 484–494 (2021).Article 
CAS 

Google Scholar 
Bae, G., Chung, M. W., Ji, S. G., Jaouen, F. & Choi, C. H. pH effect on the H2O2-induced deactivation of Fe–N–C catalysts. ACS Catal. 10, 8485–8495 (2020).Article 
CAS 

Google Scholar 
Saveleva, V. A. et al. Potential-induced spin changes in Fe/N/C electrocatalysts assessed by in situ X-ray emission spectroscopy. Angew. Chem. Int. Ed. 60, 11707–11712 (2021).Article 
CAS 

Google Scholar 
Ferrandon, M. et al. Stability of iron species in heat-treated polyaniline-iron-carbon polymer electrolyte fuel cell cathode catalysts. Electrochim. Acta 110, 282–291 (2013).Article 
CAS 

Google Scholar 
Qiao, Z. et al. Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021).Article 
CAS 

Google Scholar 
Kosmala, T. et al. Stable, active, and methanol-tolerant PGM-free surfaces in an acidic medium: electron tunneling at play in Pt/FeNC hybrid catalysts for direct methanol fuel cell cathodes. ACS Catal. 10, 7475–7485 (2020).Article 
CAS 

Google Scholar 
Zeng, Y. et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zeng, Y. et al. Pt nanoparticles on atomic-metal-rich carbon for heavy-duty fuel cell catalysts: durability enhancement and degradation behavior in membrane electrode assemblies. ACS Catal. 13, 11871–11882 (2023).Article 
CAS 

Google Scholar 
Chen, Z. et al. Enhanced performance of atomically dispersed dual-site Fe–Mn electrocatalysts through cascade reaction mechanism. Appl. Catal. B Environ. 288, 120021 (2021).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles