Deep mutational scanning and machine learning for the analysis of antimicrobial-peptide features driving membrane selectivity

Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).Article 
CAS 
PubMed 

Google Scholar 
Huang, Y., Huang, J. & Chen, Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1, 143–152 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Koch, P. et al. Optimization of the antimicrobial peptide Bac7 by deep mutational scanning. BMC Biol. 20, 114 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tucker, A. T. et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell 172, 618–628.e13 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Khabbaz, H., Karimi-Jafari, M. H., Saboury, A. A. & BabaAli, B. Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques. BMC Bioinformatics 22, 549 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, J. et al. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences. Nat. Biomed. Eng. 7, 797–810 (2023).Article 
CAS 
PubMed 

Google Scholar 
Randall, J. R. et al. Designing and identifying β-hairpin peptide macrocycles with antibiotic potential. Sci. Adv. 9, eade0008 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Fahrner, R. L. et al. Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem. Biol. 3, 543–550 (1996).Article 
CAS 
PubMed 

Google Scholar 
Panteleev, P. V., Bolosov, I. A., Balandin, S. V. & Ovchinnikova, T. V. Structure and biological functions of β-hairpin antimicrobial peptides. Acta Nat. 7, 37–47 (2015).Article 
CAS 

Google Scholar 
Steinberg, D. A. et al. Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob. Agents Chemother. 41, 1738–1742 (1997).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Edwards, I. A. et al. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect. Dis. 2, 442–450 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Soundrarajan, N. et al. Protegrin-1 cytotoxicity towards mammalian cells positively correlates with the magnitude of conformational changes of the unfolded form upon cell interaction. Sci. Rep. 9, 11569 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Díez-Aguilar, M. et al. Murepavadin antimicrobial activity against and resistance development in cystic fibrosis Pseudomonas aeruginosa isolates. J. Antimicrob. Chemother. 76, 984–992 (2021).Article 
PubMed 

Google Scholar 
Moreno-Morales, J., Guardiola, S., Ballesté-Delpierre, C., Giralt, E. & Vila, J. A new synthetic protegrin as a promising peptide with antibacterial activity against MDR Gram-negative pathogens. J. Antimicrob. Chemother. 77, 3077–3085 (2022).Article 
CAS 
PubMed 

Google Scholar 
Polyphor Ltd. Pivotal study in nosocomial pneumonia suspected or confirmed to be due to Pseudomonas (PRISM-UDR). Study Record. Beta ClinicalTrials.gov https://beta.clinicaltrials.gov/study/NCT03582007 (2019).Aumelas, A. et al. Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur. J. Biochem. 237, 575–583 (1996).Article 
CAS 
PubMed 

Google Scholar 
Avitabile, C., D’Andrea, L. D. & Romanelli, A. Circular dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci. Rep. 4, 4293 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Greenfield, N. & Fasman, G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116 (1969).Article 
CAS 
PubMed 

Google Scholar 
Feng, X. et al. The critical role of tryptophan in the antimicrobial activity and cell toxicity of the duck antimicrobial peptide DCATH. Front. Microbiol. 11, 1146 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Wei, S. Y. et al. Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. J. Bacteriol. 188, 328–334 (2006).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Subbalakshmi, C., Bikshapathy, E., Sitaram, N. & Nagaraj, R. Antibacterial and hemolytic activities of single tryptophan analogs of indolicidin. Biochem. Biophys. Res. Commun. 274, 714–716 (2000).Article 
CAS 
PubMed 

Google Scholar 
Azad, M. A. K. et al. Significant accumulation of polymyxin in single renal tubular cells: a medicinal chemistry and triple correlative microscopy approach. Anal. Chem. 87, 1590–1595 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sales, G. T. M. & Foresto, R. D. Drug-induced nephrotoxicity. Rev. Assoc. Med. Bras. 66, 82–90 (2020).Article 

Google Scholar 
Poirel, L., Jayol, A. & Nordmanna, P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 30, 557–596 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bolosov, I. A. et al. Design of protegrin-1 analogs with improved antibacterial selectivity. Pharmaceutics 15, 2047 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cherkasov, A. et al. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem. Biol. 4, 65–74 (2009).Article 
CAS 
PubMed 

Google Scholar 
Guralp, S. A., Murgha, Y. E., Rouillard, J. M. & Gulari, E. From design to screening: a new antimicrobial peptide discovery pipeline. PLoS ONE 8, e59305 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hilpert, K., Winkler, D. F. H. & Hancock, R. E. W. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat. Protoc. 2, 1333–1349 (2007).Article 
CAS 
PubMed 

Google Scholar 
Bobone, S. & Stella, L. Selectivity of antimicrobial peptides: a complex interplay of multiple equilibria. Adv. Exp. Med. Biol. 1117, 175–214 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lai, J. R., Epand, R. F., Weisblum, B., Epand, R. M. & Gellman, S. H. Roles of salt and conformation in the biological and physicochemical behavior of protegrin-1 and designed analogues: correlation of antimicrobial, hemolytic, and lipid bilayer-perturbing activities. Biochemistry 45, 15718–15730 (2006).Article 
CAS 
PubMed 

Google Scholar 
Harwig, S. S. L. Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Eur. J. Biochem. 240, 352–357 (1996).Article 
CAS 
PubMed 

Google Scholar 
Lai, J. R., Huck, B. R., Weisblum, B. & Gellman, S. H. Design of non-cysteine-containing antimicrobial β-hairpins: structure–activity relationship studies with linear protegrin-1 analogues. Biochemistry 41, 12835–12842 (2002).Article 
CAS 
PubMed 

Google Scholar 
Chen, J. et al. Development of protegrins for the treatment and prevention of oral mucositis: structure–activity relationships of synthetic protegrin analogues. Biopolymers 55, 88–98 (2000).Article 
CAS 
PubMed 

Google Scholar 
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE https://doi.org/10.1371/journal.pone.0163962 (2016).Dodt, M., Roehr, J. T., Ahmed, R. & Dieterich, C. FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1, 895–905 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science https://doi.org/10.1126/science.ade2574 (2023).Detlefsen, N. S., Hauberg, S. & Boomsma, W. Learning meaningful representations of protein sequences. Nat. Commun. 13, 1914 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Facebook Research. Evolutionary scale modeling. GitHub https://github.com/facebookresearch/esm#main-models (2023).Vieira, L. C. Deep mutational analysis and machine learning uncover antimicrobial peptide features driving membrane selectivity. GitHub https://github.com/ziul-bio/DMS_ML_AMP (2024).Randall, J. R. et al. Synthetic antibacterial discovery of symbah-1, a macrocyclic β-hairpin peptide antibiotic. iScience 25, 103611 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles