Sophisticated natural products as antibiotics

Lewis, K. The science of antibiotic discovery. Cell 181, 29–45 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).Article 
PubMed 

Google Scholar 
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).Article 

Google Scholar 
Ramos-Castaneda, J. A. et al. Mortality due to KPC carbapenemase-producing Klebsiella pneumoniae infections: systematic review and meta-analysis: mortality due to KPC Klebsiella pneumoniae infections. J. Infect. 76, 438–448 (2018).Article 
PubMed 

Google Scholar 
Xu, L., Sun, X. & Ma, X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 16, 18 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Zgurskaya, H. I., Rybenkov, V. V., Krishnamoorthy, G. & Leus, I. V. Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier. Res. Microbiol. 169, 351–356 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).Article 
CAS 
PubMed 

Google Scholar 
D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Fenn, K. et al. Quinones are growth factors for the human gut microbiota. Microbiome 5, 161 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015). This paper describes the discovery of teixobactin from an uncultured bacterium.Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shukla, R. et al. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 186, 4059–4073.e4027 (2023).Article 
CAS 
PubMed 

Google Scholar 
Pantel, L. et al. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol. Cell 70, 83–94 e87 (2018).Article 
CAS 
PubMed 

Google Scholar 
Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Imai, Y. et al. Evybactin is a DNA gyrase inhibitor that selectively kills Mycobacterium tuberculosis. Nat. Chem. Biol. 18, 1236–1244 (2022). This paper describes the discovery of darobactins that target BamA in the outer membrane of Gram-negative bacteria.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Miller, R. D. et al. Computational identification of a systemic antibiotic for gram-negative bacteria. Nat. Microbiol. 7, 1661–1672 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shahsavari, N. et al. A silent operon of Photorhabdus luminescens encodes a prodrug mimic of GTP. mBio 13, e0070022 (2022).Article 
PubMed 

Google Scholar 
Libis, V. et al. Multiplexed mobilization and expression of biosynthetic gene clusters. Nat. Commun. 13, 5256 (2022). This paper describes an approach for efficient cloning of environmental DNA for the expression of BGCs.Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022). This study catalogues BGCs from sequenced genomes and links them to taxonomy and biogeography.Article 
CAS 
PubMed 

Google Scholar 
O’Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: Implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).Article 
PubMed 

Google Scholar 
Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017). This study provides rules for compound penetration into Gram-negative bacteria.Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mehla, J. et al. Predictive rules of efflux inhibition and avoidance in Pseudomonas aeruginosa. mBio 12, e02785–20 (2021). This study analyses physico-chemical properties of compounds that enable penetration into P. aeruginosa, and synthesis of MDR inhibitors.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, S. et al. Defining new chemical space for drug penetration into Gram-negative bacteria. Nat. Chem. Biol. 16, 1293–1302 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mansbach, R. A. et al. Machine learning algorithm identifies an antibiotic vocabulary for permeating Gram-negative bacteria. J. Chem. Inf. Model. 60, 2838–2847 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Geddes, E. J. et al. Porin-independent accumulation in Pseudomonas enables antibiotic discovery. Nature 624, 145–153 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Parker, E. N. et al. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat. Microbiol. 5, 67–75 (2020).Article 
CAS 
PubMed 

Google Scholar 
Durand-Reville, T. F. et al. Rational design of a new antibiotic class for drug-resistant infections. Nature 597, 698–702 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Srinivas, N. et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327, 1010–1013 (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Luther, A. et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576, 452–458 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Pahil, K. S. et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 625, 572–577 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zampaloni, C. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 566–571 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10, 226 (1929).CAS 
PubMed Central 

Google Scholar 
Mora-Ochomogo, M. & Lohans, C. T. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med. Chem. 12, 1623–1639 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 6, 41–55 (2007).Article 
CAS 
PubMed 

Google Scholar 
Reading, C. & Cole, M. Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11, 852–857 (1977).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Levasseur, P. et al. Efficacy of a ceftazidime–avibactam combination in a murine model of septicemia caused by Enterobacteriaceae species producing ampc or extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 58, 6490–6495 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Wunderink, R. G. et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: The TANGO II randomized clinical trial. Infect. Dis. Ther. 7, 439–455 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Lewis, K. & Ausubel, F. M. Prospects for plant-derived antibacterials. Nat. Biotechnol. 24, 1504–1507 (2006).Article 
CAS 
PubMed 

Google Scholar 
Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A. & Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl Acad. Sci. USA 97, 1433–1437 (2000).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moniruzzaman, M. et al. Analysis of orthogonal efflux and permeation properties of compounds leads to the discovery of new efflux pump inhibitors. ACS Infect. Dis. 8, 2149–2160 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R. & Blaser, M. J. Role of the microbiome in human development. Gut 68, 1108–1114 (2019).Article 
CAS 
PubMed 

Google Scholar 
Schnizlein, M. K. & Young, V. B. Capturing the environment of the Clostridioides difficile infection cycle. Nat. Rev. Gastroenterol. Hepatol. 19, 508–520 (2022).Article 
PubMed 

Google Scholar 
Anthony, W. E. et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 39, 110649 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022). This paper describes the introduction of a new type of ‘drug’—an assemblage of clostridial spores for the treatment of C. difficile infection.Article 
CAS 
PubMed 

Google Scholar 
Lopetuso, L. R., Scaldaferri, F., Petito, V. & Gasbarrini, A. Commensal clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 5, 23 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Mikusova, K., Slayden, R. A., Besra, G. S. & Brennan, P. J. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 39, 2484–2489 (1995).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chahine, E. B., Karaoui, L. R. & Mansour, H. Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Ann. Pharmacother. 48, 107–115 (2014).Article 
PubMed 

Google Scholar 
Diallo, D. et al. Antituberculosis therapy and gut microbiota: review of potential host microbiota directed-therapies. Front. Cell. Infect. Microbiol. 11, 673100 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Quigley, J. et al. Novel antimicrobials from uncultured bacteria acting against Mycobacterium tuberculosis. mBio 11, e01516–e01520 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Motiwala, T., Mthethwa, Q., Achilonu, I. & Khoza, T. ESKAPE pathogens: looking at Clp ATPases as potential drug targets. Antibiotics 11, 1218 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rempel, S. et al. A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature 580, 409–412 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Leimer, N. et al. A selective antibiotic for Lyme disease. Cell 184, 5405–5418.e5416 (2021). This paper describes the identification of an antibiotic for selective action against B. burgdorferi.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Polikanov, Y. S., Melnikov, S. V., Soll, D. & Steitz, T. A. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 22, 342–344 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chatterjee, A. N. & Perkins, H. R. Compounds formed between nucleotides related to the biosynthesis of bacterial cell wall and vancomycin. Biochem. Biophys. Res. Commun. 24, 489–494 (1966).Article 
CAS 
PubMed 

Google Scholar 
Munch, D. & Sahl, H. G. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria – Impact on binding and efficacy of antimicrobial peptides. Biochim. Biophys. Acta 1848, 3062–3071 (2015).Article 
PubMed 

Google Scholar 
Leclercq, R., Derlot, E., Duval, J. & Courvalin, P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319, 157–161 (1988).Article 
CAS 
PubMed 

Google Scholar 
Marshall, C. G., Broadhead, G., Leskiw, B. K. & Wright, G. D. d-Ala–d-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc. Natl Acad. Sci. USA 94, 6480–6483 (1997).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shukla, R. et al. Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature 608, 390–396 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shukla, R. et al. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 186, 4059–4073 (2023).Article 
CAS 
PubMed 

Google Scholar 
Homma, T. et al. Dual targeting of cell wall precursors by teixobactin leads to cell lysis. Antimicrob. Agents Chemother. 60, 6510–6517 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schatz, A., Bugie, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55, 66–69 (1944).Article 
CAS 

Google Scholar 
Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).Article 
CAS 
PubMed 

Google Scholar 
Aguirre Rivera, J. et al. Real-time measurements of aminoglycoside effects on protein synthesis in live cells. Proc. Natl Acad. Sci. USA 118, e2013315118 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Andersson, D. I., Bohman, K., Isaksson, L. A. & Kurland, C. G. Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol. Genetics Genomics 187, 467–472 (1982).Article 
CAS 

Google Scholar 
Wohlgemuth, I. et al. Translation error clusters induced by aminoglycoside antibiotics. Nat. Commun. 12, 1830 (2021). This study reveals the basis of killing by aminoglycosides—the introduction of strings of errors into nascent proteins.Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).Article 
CAS 
PubMed 

Google Scholar 
Kling, A. et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348, 1106–1112 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Lewis, K. (ed.) Persister Cells and Infectious Disease (Springer Nature, 2019).Dorr, T., Vulic, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Berghoff, B. A., Hoekzema, M., Aulbach, L. & Wagner, E. G. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation. Mol. Microbiol. 103, 1020–1033 (2017).Article 
CAS 
PubMed 

Google Scholar 
Romilly, C., Deindl, S. & Wagner, E. G. H. The ribosomal protein S1-dependent standby site in tisB mRNA consists of a single-stranded region and a 5′ structure element. Proc. Natl Acad. Sci. USA 116, 15901–15906 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schumacher, M. A. et al. HipBA–promoter structures reveal the basis of heritable multidrug tolerance. Nature 524, 59–64 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Manuse, S. et al. Bacterial persisters are a stochastically formed subpopulation of low-energy cells. PLoS Biol. 19, e3001194 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Quigley, J. & Lewis, K. Noise in a metabolic pathway leads to persister formation in Mycobacterium tuberculosis. Microbiol. Spectr. 10, e0294822 (2022).Article 
PubMed 

Google Scholar 
Fleck, L. E. et al. A screen for and validation of prodrug antimicrobials. Antimicrob. Agents Chemother. 58, 1410–1419 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Goodreid, J. D. et al. Total synthesis and antibacterial testing of the A54556 cyclic acyldepsipeptides isolated from Streptomyces hawaiiensis. J. Nat. Prod. 77, 2170–2181 (2014).Article 
CAS 
PubMed 

Google Scholar 
Thomy, D. et al. The ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 reveals an accessory clpP gene as a novel antibiotic resistance factor. Appl. Environ. Microbiol. 85, e01292–19 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brotz-Oesterhelt, H. et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat. Med. 11, 1082–1087 (2005). This paper describes the discovery of the mechanism of killing by ADEP: dysregulation of the bacterial protease ClpP.Article 
PubMed 

Google Scholar 
Olivares, A. O., Nager, A. R., Iosefson, O., Sauer, R. T. & Baker, T. A. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Nat. Struct. Mol. Biol. 21, 871–875 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vahidi, S. et al. Reversible inhibition of the ClpP protease via an N-terminal conformational switch. Proc. Natl Acad. Sci. USA 115, E6447–E6456 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Griffith, E. C. et al. Ureadepsipeptides as ClpP Activators. ACS Infect. Dis. 5, 1915–1925 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Malik, I. T. et al. Functional characterisation of ClpP mutations conferring resistance to acyldepsipeptide antibiotics in firmicutes. ChemBioChem 21, 1997–2012 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gatsogiannis, C., Balogh, D., Merino, F., Sieber, S. A. & Raunser, S. Cryo-EM structure of the ClpXP protein degradation machinery. Nat. Struct. Mol. Biol. 26, 946–954 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ripstein, Z. A., Vahidi, S., Houry, W. A., Rubinstein, J. L. & Kay, L. E. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. eLife 9, e52158 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fei, X. et al. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. eLife 9, e52774 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sass, P. et al. Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc. Natl Acad. Sci. USA 108, 17474–17479 (2011).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Silber, N., Mayer, C., Matos de Opitz, C. L. & Sass, P. Progression of the late-stage divisome is unaffected by the depletion of the cytoplasmic FtsZ pool. Commun. Biol. 4, 270 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Conlon, B. P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370 (2013). This paper describes the anti-persister activity of ADEP.Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mroue, N. et al. Pharmacodynamics of ClpP-activating antibiotic combinations against Gram-positive pathogens. Antimicrob. Agents Chemother. 64, e01554-19 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Brown Gandt, A. et al. In vivo and in vitro effects of a ClpP-activating antibiotic against vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 62, e00424-18 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Brotz-Oesterhelt, H. & Vorbach, A. Reprogramming of the caseinolytic protease by ADEP antibiotics: molecular mechanism, cellular consequences, therapeutic potential. Front. Mol. Biosci. 8, 690902 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Frees, D., Gerth, U. & Ingmer, H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int. J. Med. Microbiol. 304, 142–149 (2014).Article 
CAS 
PubMed 

Google Scholar 
Illigmann, A., Thoma, Y., Pan, S., Reinhardt, L. & Brotz-Oesterhelt, H. Contribution of the Clp protease to bacterial survival and mitochondrial homoeostasis. Microb. Physiol. 31, 260–279 (2021).Article 
CAS 
PubMed 

Google Scholar 
Schuster, M. et al. Peptidomimetic antibiotics disrupt the lipopolysaccharide transport bridge of drug-resistant Enterobacteriaceae. Sci. Adv. 9, eadg3683 (2023).Nguyen, H. et al. Characterization of a radical SAM oxygenase for the ether crosslinking in darobactin biosynthesis. J. Am. Chem. Soc. 144, 18876–18886 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Groß, S. et al. Improved broad-spectrum antibiotics against Gram-negative pathogens via darobactin biosynthetic pathway engineering. Chem. Sci. 12, 11882–11893 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Seyfert, C. E. et al. Darobactins exhibiting superior antibiotic activity by Cryo-EM structure guided biosynthetic engineering. Angew. Chem. Int. Ed. Engl. 62, e202214094 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Lin, Y. C. et al. Atroposelective total synthesis of darobactin A. J. Am. Chem. Soc. 144, 14458–14462 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nesic, M. et al. Total synthesis of darobactin A. J. Am. Chem. Soc. 144, 14026–14030 (2022).Article 
CAS 
PubMed 

Google Scholar 
Tan, Y. S., Lane, D. P. & Verma, C. S. Stapled peptide design: principles and roles of computation. Drug Discov. Today 21, 1642–1653 (2016).Article 
CAS 
PubMed 

Google Scholar 
Maeda, K., Osato, T. & Umezawa, H. A new antibiotic, azomycin. J. Antibiot. 6, 182 (1953).CAS 

Google Scholar 
Nakamura, S. Structure of azomycin, a new antibiotic. Pharm. Bull. 3, 379–383 (1955).Article 
CAS 
PubMed 

Google Scholar 
Shoji, J. H. et al. Isolation of azomycin from Pseudomonas fluorescens. J. Antibiot. 42, 1513–1514 (1989).Article 
CAS 

Google Scholar 
Gupta, R. et al. Functionalized nitroimidazole scaffold construction and their pharmaceutical applications: a 1950–2021 comprehensive overview. Pharmaceuticals 15, 561 (2022).Article 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Goldstein, B. P. et al. The mechanism of action of nitro-heterocyclic antimicrobial drugs. Metabolic activation by micro-organisms. J. Gen. Microbiol. 100, 283–298 (1977).Article 
CAS 
PubMed 

Google Scholar 
Miller, M. J. & Liu, R. Design and syntheses of new antibiotics inspired by nature’s quest for iron in an oxidative climate. Acc. Chem. Res. 54, 1646–1661 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sato, T. & Yamawaki, K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis. 69, S538–S543 (2019). This paper describes the creation of an approved chimeric antibiotic utilizing a siderophore moiety for penetration into the cell.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Broder, S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res. 85, 1–18 (2010).Article 
CAS 
PubMed 

Google Scholar 
Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, J. Y., Tsolis, R. M. & Baumler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cook, M. A. & Wright, G. D. The past, present, and future of antibiotics. Sci. Transl. Med. 14, eabo7793 (2022).Article 
CAS 
PubMed 

Google Scholar 
Smith, P. A. et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561, 189–194 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles