Genome analysis through image processing with deep learning models

Durbin R, Eddy SR, Krogh A, Mitchison G. Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge university press; 1998.Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25:1754–60.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. Mummer4: A fast and versatile genome alignment system. PLoS Comput Biol. 2018;14:1005944.Article 

Google Scholar 
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. Star: ultrafast universal rna-seq aligner. Bioinformatics. 2013;29:15–21.Article 
CAS 
PubMed 

Google Scholar 
Sohn J-i, Nam J-W. The present and future of de novo whole-genome assembly. Brief Bioinforma. 2018;19:23–40.CAS 

Google Scholar 
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. Megahit: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.Article 
CAS 
PubMed 

Google Scholar 
Chen Y, Nie F, Xie S-Q, Zheng Y-F, Dai Q, Bray T, et al. Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat Commun. 2021;12:60.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Idury RM, Waterman MS. A new algorithm for dna sequence assembly. J Comput Biol. 1995;2:291–306.Article 
CAS 
PubMed 

Google Scholar 
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. Abyss: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–23.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li Y, Zheng H, Luo R, Wu H, Zhu H, Li R, et al. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nat Biotechnol. 2011;29:723–30.Article 
CAS 
PubMed 

Google Scholar 
Consortium GP, Auton A, Brooks L, Durbin R, Garrison E, Kang H. A global reference for human genetic variation. Nature. 2015;526:68–74.Article 

Google Scholar 
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.Article 

Google Scholar 
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.Article 
CAS 
PubMed 

Google Scholar 
Maxwell JC. On the theory of the three primary colours. Trans R Soc Edinb. 1860;21:275–98.Article 

Google Scholar 
Smith AR. Color gamut transform pairs. ACM SIGGRAPH Computer Graph. 1978;12:12–19.Article 
CAS 

Google Scholar 
Kang HR. Digital color halftoning. SPIE/IEEE Series on Imaging Science and Engineering. 1999.Chandel R, Gupta G. Image filtering algorithms and techniques: A review. Int J Adva Res. Computer Sci Softw Eng. 2013;3:198–202.Petrou MM, Petrou C. Image processing: the fundamentals. John Wiley & Sons; 2010, pp. 47–176.Singh G, Mittal A. Various image enhancement techniques-a critical review. Int J Innov Sci Res. 2014;10:267–74.
Google Scholar 
London A, Benhar I, Schwartz M. The retina as a window to the brain—from eye research to cns disorders. Nat Rev Neurol. 2013;9:44–53.Article 
CAS 
PubMed 

Google Scholar 
Hussey KA, Hadyniak SE, Johnston RJ Jr. Patterning and development of photoreceptors in the human retina. Front cell developmental Biol. 2022;10:878350.Article 

Google Scholar 
Cammalleri M, Bagnoli P, Bigiani A. Molecular and cellular mechanisms underlying somatostatin-based signaling in two model neural networks, the retina and the hippocampus. Int J Mol Sci. 2019;20:2506.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schnapf JL, Baylor DA. How photoreceptor cells respond to light. Sci Am. 1987;256:40–47.Article 
CAS 
PubMed 

Google Scholar 
Shiells R. Photoreceptor-bipolar cell transmission. In: Neurobiology and Clinical Aspects of the Outer Retina. Springer; 1995, pp. 297–324.Erskine L, Herrera E. The retinal ganglion cell axon’s journey: insights into molecular mechanisms of axon guidance. Developmental Biol. 2007;308:1–14.Article 
CAS 

Google Scholar 
Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT press, (2016).Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database. In: 2009. IEEE Conference on Computer Vision and Pattern Recognition. Ieee; 2009. pp. 248–55.
Google Scholar 
Krizhevsky A. Learning multiple layers of features from tiny images. 2009.Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–55 (2014).Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Info Processing Syst. 2012;25.Uchida S. Image processing and recognition for biological images. Dev, growth Differ. 2013;55:523–49.Article 
CAS 
PubMed 

Google Scholar 
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–40 (2015).Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. Commun ACM. 2020;63:139–44.Article 

Google Scholar 
Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Adv Neural Inf Process Syst. 2020;33:6840–51.
Google Scholar 
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vision (IJCV) 2015;115:211–52 https://doi.org/10.1007/s11263-015-0816-y.Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. Ncbi blast: a better web interface. Nucleic acids Res. 2008;36:5–9.Article 

Google Scholar 
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33:831–8.Article 
CAS 
PubMed 

Google Scholar 
Jeffrey HJ. Chaos game representation of gene structure. Nucleic acids Res. 1990;18:2163–70.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deschavanne PJ, Giron A, Vilain J, Fagot G, Fertil B. Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol Biol Evol. 1999;16:1391–9.Article 
CAS 
PubMed 

Google Scholar 
He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: Computer Vision–ECCV. 2016: 14th European Conference. Amsterdam, The Netherlands: Springer; 2016. p. 630–45. October 11–14, 2016, Proceedings, Part IV 14.
Google Scholar 
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. arXiv preprint. An image is worth 16×16 words: Transformers for image recognition at scale. 2020. arXiv:2010.11929.Mill´an Arias P, Alipour F, Hill KA, Kari L. Delucs: Deep learning for unsupervised clustering of dna sequences. Plos one. 2022;17:0261531.Article 

Google Scholar 
Hammad MS, Ghoneim VF, Mabrouk MS, Al-Atabany WI. A hybrid deep learning approach for covid-19 detection based on genomic image processing techniques. Sci Rep. 2023;13:4003.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang Y-z, Liu Y, Bai Z, Fujimoto K, Uematsu S, Imoto S. Zero-shotcapable identification of phage–host relationships with whole-genome sequence representation by contrastive learning. Brief Bioinforma. 2023;24:239.Article 

Google Scholar 
Joseph J, Sasikumar R. Chaos game representation for comparison of whole genomes. BMC Bioinforma. 2006;7:1–10.Article 

Google Scholar 
Lichtblau D. Alignment-free genomic sequence comparison using fcgr and signal processing. BMC Bioinforma. 2019;20:1–17.Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and snp calling from next-generation sequencing data. Nat Rev Genet. 2011;12:443–51.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. BioRxiv, 2018;201178. https://www.biorxiv.org/content/10.1101/201178v3.abstract.Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907. 2012.Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal snp and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018;36:983–7.Article 
CAS 
PubMed 

Google Scholar 
Robinson JT, Thorvaldsd´ottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shafin K, Pesout T, Chang P-C, Nattestad M, Kolesnikov A, Goel S, et al. Haplotype-aware variant calling with pepper-margin-deepvariant enables high accuracy in nanopore long-reads. Nat methods. 2021;18:1322–32.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang H, Gu F, Zhang L, Hua X-S. Using generative adversarial networks for genome variant calling from low depth ont sequencing data. Sci Rep. 2022;12:8725.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cai L, Wu Y, Gao J. Deepsv: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network. BMC Bioinforma. 2019;20:1–17.Article 

Google Scholar 
Popic V, Rohlicek C, Cunial F, Hajirasouliha I, Meleshko D, Garimella K, et al. Cue: a deep-learning framework for structural variant discovery and genotyping. Nat Methods. 2023;20:559–68.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ye K, Wang S, Lin J, Jia P, Xu T, Meng D. Svision-pro: comparative sequence-to-image representation and instance segmentation for de novo and somatic structural variant discovery. 2023.Fang L, Liu Q, Monteys AM, Gonzalez-Alegre P, Davidson BL, Wang K. Deeprepeat: direct quantification of short tandem repeats on signal data from nanopore sequencing. Genome Biol. 2022;23:108.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed rna profiling in single cells. Science. 2015;348:6090.Article 

Google Scholar 
Yu Q, Jiang M, Wu L. Spatial transcriptomics technology in cancer research. Front Oncol. 2022;12:1019111.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Close JL, Long BR, Zeng H. Spatially resolved transcriptomics in neuroscience. Nat methods. 2021;18:23–25.Article 
CAS 
PubMed 

Google Scholar 
Shah S, Lubeck E, Zhou W, Cai L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron. 2016;92:342–57.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang M, Eichhorn SW, Zingg B, Yao Z, Cotter K, Zeng H, et al. Spatially resolved cell atlas of the mouse primary motor cortex by merfish. Nature. 2021;598:137–43.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, W¨ahlby C, et al. In situ sequencing for rna analysis in preserved tissue and cells. Nat methods. 2013;10:857–60.Article 
CAS 
PubMed 

Google Scholar 
Chen A, Liao S, Cheng M, Ma K, Wu L, Lai Y, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell. 2022;185:1777–92.Article 
CAS 
PubMed 

Google Scholar 
Chen H, Li D, Bar-Joseph Z. Cell segmentation for high-resolution spatial transcriptomics. In: Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16–19, 2023, Proceedings, vol. 13976, p. 251 (2023).Dries R, Chen J, Del Rossi N, Khan MM, Sistig A, Yuan G-C. Advances in spatial transcriptomic data analysis. Genome Res. 2021;31:1706–18.Article 
PubMed 
PubMed Central 

Google Scholar 
Petukhov V, Xu RJ, Soldatov RA, Cadinu P, Khodosevich K, Moffitt JR, et al. Cell segmentation in imaging-based spatial transcriptomics. Nat Biotechnol. 2022;40:345–54.Article 
CAS 
PubMed 

Google Scholar 
Palla G, Fischer DS, Regev A, Theis FJ. Spatial components of molecular tissue biology. Nat Biotechnol. 2022;40:308–18.Article 
CAS 
PubMed 

Google Scholar 
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Vol. 36 pp. 234–41 (2015).Biancalani T, Scalia G, Buffoni L, Avasthi R, Lu Z, Sanger A, et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with tangram. Nat methods. 2021;18:1352–62.Article 
PubMed 
PubMed Central 

Google Scholar 
Lopez R, Li B, Keren-Shaul H, Boyeau P, Kedmi M, Pilzer D, et al. Destvi identifies continuums of cell types in spatial transcriptomics data. Nat Biotechnol. 2022;40:1360–9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tan X, Su A, Tran M, Nguyen Q. Spacell: integrating tissue morphology and spatial gene expression to predict disease cells. Bioinformatics. 2020;36:2293–4.Article 
CAS 
PubMed 

Google Scholar 
Hu J, Li X, Coleman K, Schroeder A, Ma N, Irwin DJ, et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat methods. 2021;18:1342–51.Article 
PubMed 

Google Scholar 
Dong K, Zhang S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat Commun. 2022;13:1739.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313:504–7.Article 
CAS 
PubMed 

Google Scholar 
Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural Netw. 2008;20:61–80.Article 
PubMed 

Google Scholar 
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Info Processing Syst. 2017;30:6000–10.Xia J, Zhang L, Zhu X, Liu Y, Gao Z, Hu B, et al. Understanding the limitations of deep models for molecular property prediction: Insights and solutions. In: Thirty-seventh Conference on Neural Information Processing Systems, Vol. 36. 2024.Palla G, Spitzer H, Klein M, Fischer D, Schaar AC, Kuemmerle LB, et al. Squidpy: a scalable framework for spatial omics analysis. Nat methods. 2022;19:171–8.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles