Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β−1,3-glucan synthesis inhibition

Garcia-Vidal, C., Viasus, D. & Carratala, J. Pathogenesis of invasive fungal infections. Curr. Opin. Infect. Dis. 26, 270–276 (2013).Article 
CAS 
PubMed 

Google Scholar 
Erwig, L. P. & Gow, N. A. R. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14, 163–176 (2016).Article 
CAS 
PubMed 

Google Scholar 
Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428–e438 (2024).Article 
PubMed 

Google Scholar 
Hoenigl, M. Invasive fungal disease complicating Coronavirus Disease 2019: When it rains, it spores. Clin. Infect. Dis. 73, e1645–e1648 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hoenigl, M. et al. COVID-19-associated fungal infections. Nat. Microbiol. 7, 1127–1140 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ghannoum, M. A. & Rice, L. B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12, 501–517 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Verweij, P. E., Snelders, E., Kema, G. H. J., Mellado, E. & Melchers, W. J. G. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect. Dis. 9, 789–795 (2009).Article 
CAS 
PubMed 

Google Scholar 
Odds, F. C., Brown, A. J. P. & Gow, N. A. R. Antifungal agents: Mechanisms of action. Trends Microbiol 11, 272–279 (2003).Article 
CAS 
PubMed 

Google Scholar 
Hasim, S. & Coleman, J. J. Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Med. Chem. 11, 869–883 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Perlin, D. S. Current perspectives on echinocandin class drugs. Future Microbiol. 6, 441–457 (2011).Article 
CAS 
PubMed 

Google Scholar 
Chen, S. C. A., Slavin, M. A. & Sorrell, T. C. Echinocandin antifungal drugs in fungal infections. Drugs 71, 11–41 (2011).Article 
PubMed 

Google Scholar 
SC, D. & Stevens, D. A. Caspofungin. Clin. Infect. Dis. 36, 1445–1457 (2003).Article 

Google Scholar 
Hu, X. et al. Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1. Nature 616, 190–198 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Reboli, A. C. et al. Anidulafungin versus fluconazole invasive candidiasis. N. Engl. J. Med. 356, 2472–2482 (2007).Article 
CAS 
PubMed 

Google Scholar 
Pappas, P. G. et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin. Infect. Dis. 45, 883–893 (2007).Article 
CAS 
PubMed 

Google Scholar 
Latgé, J. P. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 9, 382–389 (2001).Article 
PubMed 

Google Scholar 
Latgé, J. P. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12, 310–350 (1999).Article 
PubMed 
PubMed Central 

Google Scholar 
Bowman, J. C. et al. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob. Agents Chemother. 46, 3001–3012 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hopke, A., Brown, A. J. P., Hall, R. A. & Wheeler, R. T. Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends Microbiol. 26, 284–295 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garcia-Rubio, R., de Oliveira, H. C., Rivera, J. & Trevijano-Contador, N. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front. Microbiol. 10, 2993 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239–256 (2002).Article 
CAS 
PubMed 

Google Scholar 
Cowen, L. E. & Steinbach, W. J. Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot. Cell 7, 747–764 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Safeer, A. et al. Probing cell-surface interactions in fungal cell walls by high-resolution 1H-detected solid-state NMR Spectroscopy. Chem. Eur. J. 29, e202202616 (2022).Article 
PubMed 

Google Scholar 
Chrissian, C. et al. Solid-state NMR spectroscopy identifies three classes of lipids in Cryptococcus neoformans melanized cell walls whole fungal cells. J. Biol. Chem. 295, 15083–15096 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ghassemi, N. et al. Solid-state NMR investigations of extracellular matrixes and cell walls of algae, bacteria, fungi, and plants. Chem. Rev. 122, 10036–10086 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kang, X. et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat. Commun. 9, 2747 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Latgé, J. P. & Wang, T. Modern biophysics redefines our understanding of fungal cell wall structure, complexity, and dynamics. mBio 13, e0114522 (2022).Article 
PubMed 

Google Scholar 
Lamon, G. et al. Solid-state NMR molecular snapshots of Aspergillus fumigatus cell wall architecture during a conidial morphotype transition. Proc. Natl Acad. Sci. USA 120, e2212003120 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chakraborty, A. et al. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat. Commun. 12, 6346 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fontaine, T. et al. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J. Biol. Chem. 275, 27594–27607 (2000).Article 
CAS 
PubMed 

Google Scholar 
Samar, D., Kieler, J. B. & Klutts, J. S. Identification and deletion of Tft1, a predicted glycosyltransferase necessary for cell wall β-1, 3; 1, 4-glucan synthesis in Aspergillus fumigatus. PLoS One 10, e0117336 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Chevalier, L. et al. Cell wall dynamics stabilize tip growth in a filamentous fungus. PloS Biol. 21, e3001981 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Davi, V. et al. Systematic mapping of cell wall mechanics in the regulation of cell morphogenesis. Proc. Natl Acad. Sci. USA 116, 13833–13838 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, L. et al. Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy. Biotechnol. Prog. 21, 292–299 (2005).Article 
PubMed 

Google Scholar 
Ni, Q. Z. et al. High frequency dynamic nuclear polarization. Acc. Chem. Res. 46, 1933–1941 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mentink-Vigier, F., Akbey, Ü., Oschkinat, H., Vega, S. & Feintuch, A. Theoretical aspects of magic angle spinning-dynamic nuclear polarization. J. Magn. Reson. 258, 102–120 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Koers, E. J. et al. NMR-based structural biology enhanced by dynamic nuclear polarization at high magnetic field. J. Biomol. NMR 60, 157–168 (2014).Article 
CAS 
PubMed 

Google Scholar 
Fernando, L. D. et al. Structural polymorphism of chitin and chitosan in fungal cell walls from solid-state NMR and principal component analysis. Front. Mol. Biosci. 8, 727053 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sarkar, D. et al. Diffusion in intact secondary cell wall models of plants at different equilibrium moisture content. Cell Surf. 9, 100105 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vermaas, J. V. et al. Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol. Biofuels Bioprod. 8, 217 (2015).Article 

Google Scholar 
Gow N. A. R., Latge, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5, FUNK-0035-2016 (2017).Wessels, J. G. H. Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol. 32, 413–437 (1994).Article 
CAS 

Google Scholar 
Latgé, J. P. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 66, 279–290 (2007).Article 
PubMed 

Google Scholar 
Walker, L. A., Lee, K. K., Munro, C. A. & Gow, N. A. Caspofungin treatment of aspergillus fumigatus results in ChsG-dependent upregulation of Chitin synthesis and the formation of Chitin-rich microcolonies. Antimicrob. Agents Chemother. 59, 5932–5941 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wagner, A. S., Lumsdaine, S. W., Mangrum, M. M. & Reynolds, T. B. Caspofungin-induced β(1,3)-glucan exposure in Candida albicans is driven by increased chitin levels. mBio 14, e0007423 (2023).Article 
PubMed 

Google Scholar 
Jiménez-Ortigosa, C. et al. Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins. Antimicrob. Agents Chemother. 56, 6121–6131 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Muszkieta, L. et al. Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion. Cell Microbiol. 16, 1784–1805 (2014).Article 
CAS 
PubMed 

Google Scholar 
Verwer, P. E., van Duijn, M. L., Tavakol, M., Bakker-Woudenberg, I. A. & van de Sande, W. W. Reshuffling of Aspergillus fumigatus cell wall components chitin and β-glucan under the influence of caspofungin or nikkomycin Z alone or in combination. Antimicrob. Agents Chemother. 56, 1595–1598 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ganesan, L. T., Manavathu, E. K., Cutright, J. L., Alangaden, G. J. & Chandrasekar, P. H. In-vitro activity of nikkomycin Z alone and in combination with polyenes, triazoles or echinocandins against Aspergillus fumigatus. Clin. MIcrobiol. Infect. 10, 961–966 (2004).Article 
CAS 
PubMed 

Google Scholar 
Mouyna, I. et al. What are the functions of Chitin Deacetylases in Aspergillus fumigatus? Front. Cell. Infect. Microbiol. 10, 28 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fernando, L. D. et al. Structural adaptation of fungal cell wall in hypersaline environment. Nat. Commun. 14, 7082 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Simmons, T. J. et al. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun. 7, 13902 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kirui, A. et al. Carbohydrate-aromatic interface and molecular architecture of lignocellulose. Nat. Commun. 13, 538 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Temple, H. et al. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nat. Plants 8, 656–669 (2022).Article 
CAS 
PubMed 

Google Scholar 
Valsecchi, I. et al. The puzzling construction of the conidial outer layer of Aspergillus fumigatus. Cell Microbiol 21, e12994 (2019).Article 
PubMed 

Google Scholar 
Fontaine, T. et al. Cell wall alpha1-3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genet. Biol. 47, 707–712 (2010).Article 
CAS 
PubMed 

Google Scholar 
Loussert, C. et al. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol 12, 405–410 (2010).Article 
CAS 
PubMed 

Google Scholar 
Mouyna, I. et al. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J. Biol. Chem. 275, 14882–14889 (2000).Article 
CAS 
PubMed 

Google Scholar 
Gravelat, F. N. et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLOS Pathog. 9, e1003575 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lamarre, C. et al. Galactofuranose attenuates cellular adhesion of Aspergillus fumigatus. Cell Microbiol 11, 1612–1623 (2009).Article 
CAS 
PubMed 

Google Scholar 
Aimanianda, V. et al. The dual activity responsible for the elongation and branching of β-(1,3)-Glucan in the fungal cell wall. mBio 8, 00619–00617 (2017).Article 

Google Scholar 
Satish, S. et al. Stress-induced changes in the lipid microenvironment of β-(1, 3)-d-glucan synthase cause clinically important echinocandin resistance in Aspergillus fumigatus. mBio 10, e00779–00719 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jimenez-Ortigosa, C., Moore, C., Denning, D. W. & Perlin, D. S. Emergence of Echinocandin resistance due to a point mutation in the fks1 Gene of Aspergillus fumigatus in a patient with chronic pulmonary Aspergillosis. Antimicrob. Agents Chemother. 61, e01277–01217 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Loiko, V. & Wagener, J. The paradoxical effect of echinocandins in Aspergillus fumigatus relies on recovery of the β-1, 3-glucan synthase Fks1. Antimicrob. Agents Chemother. 61, e01690–01616 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Valero, C. et al. Caspofungin paradoxical effect is a Tolerant “Eagle Effect” in the filamentous fungal pathogen Aspergillus fumigatus. mBio 13, e0044722 (2022).Article 
PubMed 

Google Scholar 
Gonzalez-Jimenez, I., Perlin, D. S. & Shor, E. Reactive oxidant species induced by antifungal drugs: identity, origins, functions, and connection to stress-induced cell death. Front. Cell. Infect. Microbiol. 13, 1276406 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, S. et al. Genomic and molecular identification of genes contributing to the Caspofungin Paradoxical effect in Aspergillus fumigatus. Microbiol. Spectr. 10, 00519–00522 (2022).Article 

Google Scholar 
Liu, Z. et al. Functional genomic and biochemical analysis reveals pleiotropic effect of Congo red on Aspergillus fumigatus. mBio 12, e00863–00821 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Widederhold, N. P., Locke, J. B., Daruwala, P. & Bartizal, K. Rezafungin (CD101) demonstrates potent in vitro activity against Aspergillus, including azole-resistant Aspergillus fumigatus isolates and cryptic species. J. Antimicrob. Chemother. 73, 3063–3067 (2018).Article 

Google Scholar 
Shaw, K. J. & Ibrahim, A. S. Fosmanogepix: A review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J. Fungi 6, 239 (2020).Article 
CAS 

Google Scholar 
Palliyil, S. et al. Monoclonal antibodies targeting surface-exposed Epitopes of Candida albicans cell wall proteins confer in vivo protection in an infection model. Antimicrob. Agents Chemother. 66, e0195721 (2022).Article 
PubMed 

Google Scholar 
Kirui, A. et al. Preparation of fungal and plant materials for structural elucidation using dynamic nuclear polarization solid-state NMR. J. Vis. Exp. 144, e59152 (2019).Liu, Z. et al. Conidium specific polysaccharides in Aspergillus fumigatus. J. Fungi 9, 155 (2023).Article 
CAS 

Google Scholar 
Johnson, S. B. & Brown, R. E. Simplified derivatization for determining sphingolipid fatty acyl composition by gas chromatography-mass spectrometry. J. Chromatogr. 605, 281–286 (1992).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rienstra, C. M. et al. De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy. Proc. Natl Acad. Sci. USA 99, 10260–10265 (2002).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Massiot, D. et al. Modelling one and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).Article 
CAS 

Google Scholar 
Baldus, M., Petkova, A. T., Herzfeld, J. & Griffin, R. G. Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol. Phys. 95, 1197–1207 (1998).Article 
ADS 
CAS 

Google Scholar 
Ader, C. et al. Structural rearrangements of membrane proteins probed by water-edited solid-state NMR. Spectrosc. J. Am. Chem. Soc. 131, 170–176 (2009).Article 
CAS 

Google Scholar 
White, P. B., Wang, T., Park, Y. B., Cosgrove, D. J. & Hong, M. Water–polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J. Am. Chem. Soc. 136, 10399–10409 (2014).Article 
CAS 
PubMed 

Google Scholar 
Helmus, J. J. & Jaroniec, C. P. Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J. Biomol. NMR 55, 355–367 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hunter, J. D. Matplotlib: A 2D graphics environment. Comput Sci. Eng. 9, 90–95 (2007).Article 

Google Scholar 
Wang, T., Williams, J. K., Schmidt-Rohr, K. & Hong, M. Relaxation-compensated difference spin diffusion NMR for detecting 13 C–13 C long-range correlations in proteins and polysaccharides. J. Biomol. NMR 61, 97–107 (2015).Article 
CAS 
PubMed 

Google Scholar 
Sauvée, C. et al. Highly efficient, water‐soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew. Chem. Int. Ed. 125, 11058–11061 (2013).Article 
ADS 

Google Scholar 
Dubroca, T. et al. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers. J. Magn. Reson. 289, 35–44 (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
De Paëpe, G., Lewandowski, J. R., Loquet, A., Böckmann, A. & Griffin, R. G. Proton assisted recoupling and protein structure determination. J. Chem. Phys. 129, 12B615 (2008).Article 

Google Scholar 
Pauli, J., Baldus, M., van Rossum, B., de Groot, H. & Oschkinat, H. Backbone and Side-chain 13C and 15N signal assignments of the α-Spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla. ChemBioChem 2, 272–281 (2001).Article 
CAS 
PubMed 

Google Scholar 
Wang, T., Salazar, A., Zabotina, O. A. & Hong, M. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional 13C solid-state nuclear magnetic Resonance Spectroscopy. Biochemistry 53, 2840–2854 (2014).Article 
CAS 
PubMed 

Google Scholar 
Addison, B. et al. Atomistic, macromolecular model of the Populus secondary cell wall informed by solid-state NMR. Sci. Adv. 10, adi7965 (2024).Article 

Google Scholar 
Jo, S., Kim, T., Iyer, V. G. & Wonpil, I. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).Article 
CAS 
PubMed 

Google Scholar 
Jo, S., Song, K. C., Desaire, H., MacKerell, A. D. & Im, W. Glycan reader: Automated sugar identification and simulation preparation for carbohydrates and glycoproteins. J. Comput. Chem. 32, 3135–3141 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Malaspina, D. C. & Faraudo, J. Chitin builder (v1.0). Zenodo, https://doi.org/10.5281/zenodo.3274726 (2019).Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual. Mol. Dyn. J. Mol. Graph. 14, 33–38 (1996).Article 
CAS 

Google Scholar 
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31, 603–632 (2006).Article 
CAS 

Google Scholar 
Guvench, O., Hatcher, E., Venable, R. M., Pastor, R. W. & MacKerell, A. D. CHARMM additive all-atom force field for glycosidic linkages between Hexopyranoses. J. Chem. Theory Comput. 5, 2353–2370 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guvench, O. et al. Additive empirical force field for hexopyranose monosaccharides. J. Comput. Chem. 29, 2543–2564 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).Article 
ADS 
CAS 

Google Scholar 
Beglov, D. & Roux, B. Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. Phys. 100, 9050–9063 (1994).Article 
ADS 
CAS 

Google Scholar 
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).Article 
ADS 
CAS 

Google Scholar 
Miyamoto, S. & Kollman, P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).Article 
CAS 

Google Scholar 
Paterlini, M. G. & Ferguson, D. M. Constant temperature simulations using the Langevin equation with velocity Verlet integration. Chem. Phys. 236, 243–252 (1998).Article 
CAS 

Google Scholar 
Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).Article 
ADS 
CAS 

Google Scholar 
Harris & R, C. et al. Array programming with NumPy. Nature 585, 357–362 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fiorin, G., Klein, M. L. & Henin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 111, 3345–3362 (2013).Article 
ADS 
CAS 

Google Scholar 
Latgé, J. P. & Chamilos, G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 33, e00140–00118 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles