Heteroatom doping enables hydrogen spillover via H+/e− diffusion pathways on a non-reducible metal oxide

Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).Article 
PubMed 

Google Scholar 
Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).Article 
CAS 

Google Scholar 
Ishaq, H., Dincer, I. & Crawford, C. A review on hydrogen production and utilization: challenges and opportunities. Int. J. Hydrog. Energy 47, 26238–26264 (2022).Article 
ADS 
CAS 

Google Scholar 
Armaroli, N. & Balzani, V. The hydrogen issue. ChemSusChem 4, 21–36 (2011).Article 
CAS 
PubMed 

Google Scholar 
Ma, N., Zhao, W., Wang, W., Li, X. & Zhou, H. Large scale of green hydrogen storage: opportunities and challenges. Int. J. Hydrog. Energy 50, 379–396 (2024).Article 
ADS 
CAS 

Google Scholar 
Shih, C. F., Zhang, T., Li, J. & Bai, C. Powering the Future with Liquid Sunshine. Joule 2, 1925–1949 (2018).Article 
CAS 

Google Scholar 
Khoobiar, S. Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles. J. Phys. Chem. 68, 411–412 (1964).Article 
CAS 

Google Scholar 
Li, M. et al. Hydrogen spillover as a promising strategy for boosting heterogeneous catalysis and hydrogen storage. Chem. Eng. J. 471, 144691 (2023).Article 
ADS 
CAS 

Google Scholar 
Shen, H., Li, H., Yang, Z. & Li, C. Magic of hydrogen spillover: understanding and application. Green. Energy Environ. 7, 1161–1198 (2022).CAS 

Google Scholar 
Mahdavi-Shakib, A. et al. The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts. Nat. Catal. 6, 710–719 (2023).Article 
CAS 

Google Scholar 
Shun, K., Matsukawa, S., Mori, K. & Yamashita, H. Specific hydrogen spillover pathways generated on graphene oxide enabling the formation of non-equilibrium alloy nanoparticles. Small. 20, 2306765 (2023).Yang, R. T. & Wang, Y. Catalyzed hydrogen spillover for hydrogen storage. J. Am. Chem. Soc. 131, 4224–4226 (2009).Article 
CAS 
PubMed 

Google Scholar 
Takabatake, M. et al. Dehydrogenative coupling of alkanes and benzene enhanced by slurry-phase interparticle hydrogen transfer. JACS Au 1, 124–129 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
You, S.-H. et al. Enhanced durability of automotive fuel cells via selectivity implementation by hydrogen spillover on the electrocatalyst surface. ACS Energy Lett. 8, 2201–2213 (2023).Article 
CAS 

Google Scholar 
Prins, R. Hydrogen spillover. facts and fiction. Chem. Rev. 112, 2714–2738 (2012).Article 
CAS 
PubMed 

Google Scholar 
Shun, K. et al. Revealing hydrogen spillover pathways in reducible metal oxides. Chem. Sci. 13, 8137–8147 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mori, K. et al. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nat. Commun. 12, 3884 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McDonough, W. F. & Sun, S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).Article 
ADS 
CAS 

Google Scholar 
Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Prins, R., Palfi, V. K. & Reiher, M. Hydrogen spillover to nonreducible. Supports J. Phys. Chem. C. 116, 14274–14283 (2012).Article 
CAS 

Google Scholar 
Masuda, S., Shun, K., Mori, K., Kuwahara, Y. & Yamashita, H. Synthesis of a binary alloy nanoparticle catalyst with an immiscible combination of Rh and Cu assisted by hydrogen spillover on a TiO2 support. Chem. Sci. 11, 4194–4203 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallogr. A 32, 751–767 (1976).Article 
ADS 

Google Scholar 
Rebours, B., d’Espinose de la Caillerie, J.-B. & Clause, O. Decoration of nickel and magnesium oxide crystallites with spinel-type phases. J. Am. Chem. Soc. 116, 1707–1717 (1994).Article 
CAS 

Google Scholar 
Hiremath, V. et al. Mg-ion inversion in MgO@MgO−Al2O3 oxides: the origin of basic sites. ChemSusChem 12, 2810–2818 (2019).Article 
CAS 
PubMed 

Google Scholar 
Di Cosimo, J. I., Dı́ez, V. K., Xu, M., Iglesia, E. & Apesteguı́a, C. R. Structure and surface and catalytic properties of Mg-Al basic oxides. J. Catal. 178, 499–510 (1998).Article 

Google Scholar 
Van Orman, J. A., Li, C. & Crispin, K. L. Aluminum diffusion and Al-vacancy association in periclase. Phys. Earth Planet. Inter. 172, 34–42 (2009).Article 
ADS 

Google Scholar 
Sha, X., Chen, L., Cooper, A. C., Pez, G. P. & Cheng, H. Hydrogen absorption and diffusion in bulk α-MoO3. J. Phys. Chem. C. 113, 11399–11407 (2009).Article 
CAS 

Google Scholar 
Xi, Y. et al. Mechanistic study of the ceria supported, re-catalyzed deoxydehydration of vicinal OH groups. Catal. Sci. Technol. 8, 5750–5762 (2018).Article 
CAS 

Google Scholar 
Wei, B. & Calatayud, M. The subsurface diffusion of hydrogen on rutile TiO2 surfaces: a periodic DFT study. Top. Catal. 65, 270–280 (2022).Article 
CAS 

Google Scholar 
Zhang, J. et al. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nat. Commun. 10, 4166 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957).Article 
CAS 

Google Scholar 
Wu, S. et al. Rapid interchangeable hydrogen, hydride, and proton species at the interface of transition metal atom on oxide. Surf. J. Am. Chem. Soc. 143, 9105–9112 (2021).Article 
ADS 
CAS 

Google Scholar 
Wang, Z. et al. Brønsted acid sites based on penta-coordinated aluminum species. Nat. Commun. 7, 13820 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Westenberg, A. A. & de Haas, N. Atom—molecule kinetics using ESR detection. II. Results for D+H2→HD+H and H+D2→HD+D. J. Chem. Phys. 47, 1393–1405 (2004).Article 
ADS 

Google Scholar 
Wenskat, M. et al. Vacancy-hydrogen interaction in niobium during low-temperature baking. Sci. Rep. 10, 8300 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, Q. et al. Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals. Nat. Catal. 5, 1030–1037 (2022).Article 
CAS 

Google Scholar 
Wang, C. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 141, 8482–8488 (2019).Article 
CAS 
PubMed 

Google Scholar 
Cheng, H. et al. Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon. Reson. J. Am. Chem. Soc. 138, 9316–9324 (2016).Article 
CAS 

Google Scholar 
Chiesa, M. et al. Excess electrons stabilized on ionic oxide surfaces. Acc. Chem. Res. 39, 861–867 (2006).Article 
CAS 
PubMed 

Google Scholar 
Sterrer, M. et al. Identification of color centers on MgO(001) thin films with scanning tunneling microscopy. J. Phys. Chem. B 110, 46–49 (2006).Article 
CAS 
PubMed 

Google Scholar 
Roiaz, M. et al. Reverse water–gas shift or sabatier methanation on Ni(110)? Stable surface species at near-ambient pressure. J. Am. Chem. Soc. 138, 4146–4154 (2016).Article 
CAS 
PubMed 

Google Scholar 
Yamaguchi, K., Ebitani, K., Yoshida, T., Yoshida, H. & Kaneda, K. Mg−Al mixed oxides as highly active acid−base catalysts for cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 121, 4526–4527 (1999).Article 
CAS 

Google Scholar 
Wang, Y., Ren, J., Deng, K., Gui, L. & Tang, Y. Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater. 12, 1622–1627 (2000).Article 

Google Scholar 
Seto, Y. & Ohtsuka, M. ReciPro: free and open-source multipurpose crystallographic software integrating a crystal model database and viewer, diffraction and microscopy simulators, and diffraction data analysis tools. J. Appl. Crystallogr. 55, 397–410 (2022).Article 
ADS 
CAS 

Google Scholar 
Xue, X. & Kanzaki, M. High-pressure δ-Al(OH)3 and δ-AlOOH phases and isostructural hydroxides/oxyhydroxides: new structural insights from high-resolution 1H and 27Al NMR. J. Phys. Chem. B 111, 13156–13166 (2007).Article 
CAS 
PubMed 

Google Scholar 
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).Article 
ADS 
CAS 

Google Scholar 
Milman, V. et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem. 77, 895–910 (2000).Article 
CAS 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
ADS 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles