Balancing G protein selectivity and efficacy in the adenosine A2A receptor

Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tehan, B. G., Bortolato, A., Blaney, F. E., Weir, M. P. & Mason, J. S. Unifying family A GPCR theories of activation. Pharmacol. Ther. 143, 51–60 (2014).Article 
CAS 
PubMed 

Google Scholar 
Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947.e25 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhou, Q. et al. Common activation mechanism of class A GPCRs. eLife 8, e50279 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Kapolka, N. J. et al. DCyFIR: a high-throughput CRISPR platform for multiplexed G protein-coupled receptor profiling and ligand discovery. Proc. Natl Acad. Sci. USA 117, 13117–13126 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Madsen, J. J., Ye, L., Frimurer, T. M. & Olsen, O. H. Mechanistic basis of GPCR activation explored by ensemble refinement of crystallographic structures. Protein Sci. 31, e4456 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Avet, C. et al. Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. eLife 11, e74101 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, S., Teng, X. & Zheng, S. Molecular basis for the selective G protein signaling of somatostatin receptors. Nat. Chem. Biol. 19, 133–140 (2023).Article 
CAS 
PubMed 

Google Scholar 
Shimada, I., Ueda, T., Kofuku, Y., Eddy, M. T. & Wüthrich, K. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 10, 579 (2018).
Google Scholar 
Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kofuku, Y. et al. Functional dynamics of deuterated β2-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew. Chem. Int. ed. Engl. 53, 13376–13379 (2014).Article 
CAS 
PubMed 

Google Scholar 
Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016).Article 
CAS 
PubMed 

Google Scholar 
Eddy, M. T. et al. Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172, 68–80.e12 (2018).Article 
CAS 
PubMed 

Google Scholar 
Mizumura, T. et al. Activation of adenosine A2A receptor by lipids from docosahexaenoic acid revealed by NMR. Sci. Adv. 6, eaay8544 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, S. K. et al. Delineating the conformational landscape of the adenosine A2A receptor during G protein coupling. Cell 184, 1884–1894.e14 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, F.-J. et al. Nanobody GPS by PCS: an efficient new NMR analysis method for G protein coupled receptors and other large proteins. J. Am. Chem. Soc. 144, 21728–21740 (2022).Article 
CAS 
PubMed 

Google Scholar 
Guerrero, A. A2A adenosine receptor agonists and their potential therapeutic applications. An update. Curr. Med. Chem. 25, 3597–3612 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gessi, S. et al. A2A adenosine receptor as a potential biomarker and a possible therapeutic target in Alzheimer’s disease. Cells 10, 2344 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fredholm, B. B., Chen, J.-F., Masino, S. A. & Vaugeois, J.-M. Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol. 45, 385–412 (2005).Article 
CAS 
PubMed 

Google Scholar 
Yu, F., Zhu, C., Xie, Q. & Wang, Y. Adenosine A2A receptor antagonists for cancer immunotherapy: miniperspective. J. Med. Chem. 63, 12196–12212 (2020).Article 
CAS 
PubMed 

Google Scholar 
Hickey, P. & Stacy, M. Adenosine A2A antagonists in Parkinson’s disease: what’s next? Curr. Neurol. Neurosci. 12, 376–385 (2012).Article 
CAS 

Google Scholar 
Morello, S., Sorrentino, R. & Pinto, A. Adenosine A2a receptor agonists as regulators of inflammation: pharmacology and therapeutic opportunities. J. Receptor Ligand Channel Res. 2, 11–17 (2009).Article 
CAS 

Google Scholar 
Zhu, C. et al. Adenosine A2A receptor antagonist istradefylline 20 versus 40 mg/day as augmentation for Parkinson’s disease: a meta-analysis. Neurol. Res. 36, 1028–1034 (2014).Article 
CAS 
PubMed 

Google Scholar 
Victor-Vega, C., Desai, A., Montesinos, M. C. & Cronstein, B. N. Adenosine A2A receptor agonists promote more rapid wound healing than recombinant human platelet–derived growth factor (becaplermin gel). Inflammation 26, 19–24 (2002).Article 
CAS 
PubMed 

Google Scholar 
Valls, M. D., Cronstein, B. N. & Montesinos, M. C. Adenosine receptor agonists for promotion of dermal wound healing. Biochem. Pharmacol. 77, 1117–1124 (2009).Article 
CAS 
PubMed 

Google Scholar 
Jenner, P. An Overview of Adenosine A2A Receptor Antagonists in Parkinson’s Disease Vol. 119 (Elsevier, 2014).Zheng, J., Zhang, X. & Zhen, X. Development of adenosine A2A receptor antagonists for the treatment of Parkinson’s disease: a recent update and challenge. ACS Chem. Neurosci. 10, 783–791 (2019).Article 
CAS 
PubMed 

Google Scholar 
Cunha, R. A. Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signal. 1, 111–134 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Allard, D., Turcotte, M. & Stagg, J. Targeting A2 adenosine receptors in cancer. Immunol. Cell Biol. 95, 333–339 (2017).Article 
CAS 
PubMed 

Google Scholar 
Fredholm, B., Cunha, R. & Svenningsson, P. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr. Top. Med. Chem. 3, 413–426 (2003).Article 
CAS 
PubMed 

Google Scholar 
Mondal, S., Hsiao, K. & Goueli, S. A. A homogenous bioluminescent system for measuring GTPase, GTPase activating protein, and guanine nucleotide exchange factor activities. Assay Drug Dev. Technol. 13, 444–455 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Carpenter, B., Nehmé, R., Warne, T., Leslie, A. G. W. & Tate, C. G. Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536, 104–107 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
García-Nafría, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. eLife 7, 213 (2018).Article 

Google Scholar 
Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Venkatakrishnan, A. J. et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536, 484–487 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ragnarsson, L., Andersson, Å., Thomas, W. G. & Lewis, R. J. Mutations in the NPxxY motif stabilize pharmacologically distinct conformational states of the α1B- and β2-adrenoceptors. Sci. Signal. 12, eaas9485 (2019).Article 
CAS 
PubMed 

Google Scholar 
Prosser, R. S., Ye, L., Pandey, A. & Orazietti, A. Activation processes in ligand-activated G protein-coupled receptors: a case study of the adenosine A2A receptor. BioEssays 39, 1700072–10 (2017).Article 

Google Scholar 
Sušac, L., Eddy, M. T., Didenko, T., Stevens, R. C. & Wüthrich, K. A2A adenosine receptor functional states characterized by 19F-NMR. Proc. Natl Acad. Sci. USA 115, 12733–12738 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Sykes, B. D., Weingarten, H. I. & Schlesinger, M. J. Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum. Proc. Natl Acad. Sci. USA 71, 469–473 (1974).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lovera, S., Cuzzolin, A., Kelm, S., Fabritiis, G. D. & Sands, Z. A. Reconstruction of apo A2A receptor activation pathways reveal ligand-competent intermediates and state-dependent cholesterol hotspots. Sci. Rep. 9, 14199 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, X. et al. Structural insights into the process of GPCR-G protein complex formation. Cell 177, 1–22 (2019).Article 

Google Scholar 
Wang, J. & Miao, Y. Mechanistic insights into specific G protein interactions with adenosine receptors. J. Phys. Chem. B 123, 6462–6473 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hata, H., Tran, D. P., Sobeh, M. M. & Kitao, A. Binding free energy of protein/ligand complexes calculated using dissociation Parallel Cascade Selection Molecular Dynamics and Markov state model. Biophys. Physicobiol. 18, 305–316 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tran, D. P. & Kitao, A. Dissociation process of a MDM2/p53 complex investigated by parallel cascade selection molecular dynamics and the Markov state model. J. Phys. Chem. B 123, 2469–2478 (2019).Article 
CAS 
PubMed 

Google Scholar 
Farrell, D. W., Speranskiy, K. & Thorpe, M. F. Generating stereochemically acceptable protein pathways. Proteins 78, 2908–2921 (2010).Article 
CAS 
PubMed 

Google Scholar 
Zhu, S. et al. Hyperphosphorylation of intrinsically disordered tau protein induces an amyloidogenic shift in its conformational ensemble. PLoS ONE 10, e0120416 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Gowers, R. J. et al. MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. SciPy2016 https://doi.org/10.25080/majora-629e541a-00e (2016).Huang, S. et al. GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol. Cell 82, 2681–2695.e6 (2022).Article 
CAS 
PubMed 

Google Scholar 
Westfield, G. H. et al. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl Acad. Sci. USA 108, 16086–16091 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Eps, N. V. et al. Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc. Natl Acad. Sci. USA 108, 9420–9424 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Ham, D. et al. Conformational switch that induces GDP release from Gi. J. Struct. Biol. 213, 107694 (2021).Article 
CAS 
PubMed 

Google Scholar 
Huang, S. K. et al. Mapping the conformational landscape of the stimulatory heterotrimeric G protein. Nat. Struct. Mol. Biol. 30, 502–511 (2023).Article 
CAS 
PubMed 

Google Scholar 
Koehl, A. et al. Structure of the µ-opioid receptor–Gi protein complex. Nature 558, 547–552 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Eps, N. V. et al. Gi- and Gs-coupled GPCRs show different modes of G-protein binding. Proc. Natl Acad. Sci. USA 115, 2383–2388 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G. & Kobilka, B. K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Faurobert, E., Otto‐Bruc, A., Chardin, P. & Chabre, M. Tryptophan W207 in transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved in the effector binding. EMBO J. 12, 4191–4198 (1993).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sljoka, A. Probing allosteric mechanism with long-range rigidity transmission across protein networks. Methods Mol. Biol. 2253, 61–75 (2021).Chen, X. et al. Structural determinants in the second intracellular loop of the human cannabinoid CB1 receptor mediate selective coupling to Gs and Gi. Br. J. Pharmacol. 161, 1817–1834 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hauser, A. S. et al. Common coupling map advances GPCR-G protein selectivity. eLife 11, e74107 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sandhu, M. et al. Dynamic spatiotemporal determinants modulate GPCR:G protein coupling selectivity and promiscuity. Nat. Commun. 13, 7428 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Okashah, N. et al. Variable G protein determinants of GPCR coupling selectivity. Proc. Natl Acad. Sci. USA 46, 201905993–201905996 (2019).
Google Scholar 
Flock, T. et al. Selectivity determinants of GPCR–G-protein binding. Nature 545, 317–322 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tawfik, D. S. Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency? Curr. Opin. Chem. Biol. 21, 73–80 (2014).Article 
CAS 
PubMed 

Google Scholar 
Copley, S. D. An evolutionary biochemist’s perspective on promiscuity. Trends Biochem. Sci. 40, 72–78 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pabon, N. A. & Camacho, C. J. Probing protein flexibility reveals a mechanism for selective promiscuity. eLife 6, e22889 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Okashah, N. et al. Variable G protein determinants of GPCR coupling selectivity. Proc. Natl Acad. Sci. USA 116, 12054–12059 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sandhu, M. et al. Conformational plasticity of the intracellular cavity of GPCR−G-protein complexes leads to G-protein promiscuity and selectivity. Proc. Natl Acad. Sci. USA 116, 11956–11965 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ridge, K. D. et al. NMR analysis of rhodopsin–transducin interactions. Vis. Res. 46, 4482–4492 (2006).Article 
CAS 
PubMed 

Google Scholar 
Wrabl, J. O. et al. The role of protein conformational fluctuations in allostery, function, and evolution. Biophys. Chem. 159, 129–141 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ye, L., Eps, N. V., Zimmer, M., Ernst, O. P. & Prosser, R. S. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533, 265 (2016).Article 
CAS 
PubMed 

Google Scholar 
Etzkorn, M. et al. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21, 394–401 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ehrlich, A. T. et al. Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing. Brain Struct. Funct. 223, 1275–1296 (2018).Article 
CAS 
PubMed 

Google Scholar 
Fiser, A. & Šali, A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491 (2003).Article 
CAS 
PubMed 

Google Scholar 
Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16, 528–552 (2019).Article 
PubMed 

Google Scholar 
He, X., Man, V. H., Yang, W., Lee, T.-S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. 153, 114502 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dickson, C. J. et al. Lipid14: the amber lipid force field. J. Chem. Theory Comput. 10, 865–879 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. J. Phys. Chem. Lett. 5, 3863–3871 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).Article 

Google Scholar 
Hoover, W. G. Canonical dynamics-equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).Article 
CAS 

Google Scholar 
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).Article 
CAS 

Google Scholar 
Scherer, M. K. et al. PyEMMA 2: a software package for estimation, validation, and analysis of Markov models. J. Chem. Theory Comput. 11, 5525–5542 (2015).Article 
CAS 
PubMed 

Google Scholar 
Harada, R. & Kitao, A. Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway. J. Chem. Phys. 139, 035103 (2013).Article 
PubMed 

Google Scholar 
Ikizawa, S. et al. PaCS-Toolkit: optimized software utilities for parallel cascade selection molecular dynamics (PaCS-MD) simulations and subsequent analyses. J. Phys. Chem. B 128, 3631–3642 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sljoka, A. in Sublinear Computation Paradigm (eds Katoh, N. et al.) 337–367 (Springer Singapore, 2022).Tucs, A., Tsuda, K. & Sljoka, A. Probing conformational dynamics of antibodies with geometric simulations. Methods Mol. Biol. 2552, 125–139 (2023).Article 
PubMed 

Google Scholar 
Sljoka, A. Algorithms in rigidity theory with applications to protein flexibility and mechanical linkages. PhD dissertation, York University. (2012).Whiteley, W. Counting out to the flexibility of molecules. Phys. Biol. 2, S116–S126 (2005).Article 
CAS 
PubMed 

Google Scholar 
Jacobs, D. J., Rader, A. J., Kuhn, L. A. & Thorpe, M. F. Protein flexibility predictions using graph theory. Proteins 44, 150–165 (2001).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles