Identifying MSMO1, ELOVL6, AACS, and CERS2 related to lipid metabolism as biomarkers of Parkinson’s disease

Tolosa, E., Garrido, A., Scholz, S. W. & Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 20(5), 385–397 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet. 386(9996), 896–912 (2015).Article 
CAS 
PubMed 

Google Scholar 
Reeve, A., Simcox, E. & Turnbull, D. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor?. Ageing Res. Rev. 14(100), 19–30 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dong-Chen, X., Yong, C., Yang, X., Chen-Yu, S. & Li-Hua, P. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target Ther. 8(1), 73 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Cermenati, G. et al. Lipids in the nervous system: From biochemistry and molecular biology to patho-physiology. Biochim. Biophys. Acta. 1851(1), 51–60 (2015).Article 
CAS 
PubMed 

Google Scholar 
Yang, D. et al. Lipid metabolism and storage in neuroglia: Role in brain development and neurodegenerative diseases. Cell Biosci. 12(1), 106 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xicoy, H., Wieringa, B. & Martens, G. J. M. The role of lipids in Parkinson’s disease. Cells. 8(1), 1 (2019).Article 

Google Scholar 
Alarcon-Gil, J. et al. Neuroprotective and anti-inflammatory effects of linoleic acid in models of Parkinson’s disease: The implication of lipid droplets and lipophagy. Cells. 11(15), 1 (2022).Article 

Google Scholar 
Galper, J. et al. Lipid pathway dysfunction is prevalent in patients with Parkinson’s disease. Brain. 145(10), 3472–3487 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Golovko, M. Y. et al. Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry. 45(22), 6956–6966 (2006).Article 
CAS 
PubMed 

Google Scholar 
Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9(1), 559 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47–e47 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. OMICS J. Integr. Biol. 16(5), 284–287 (2012).Article 
CAS 

Google Scholar 
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51(D1), D587-d592 (2023).Article 
CAS 
PubMed 

Google Scholar 
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28(11), 1947–1951 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics. 33(18), 2938–2940 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Yue, S. et al. Machine learning for the prediction of acute kidney injury in patients with sepsis. J. Transl. Med. 20(1), 215 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 12, 77 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, Y., Tan, L., Xie, J., Cheng, L. & Wang, X. Distinct microglia alternative splicing in Alzheimer’s disease. Aging (Albany NY). 14(16), 6554–6566 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1(6), 417–425 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gribov, A. et al. SEURAT: Visual analytics for the integrated analysis of microarray data. BMC Med. Genomics. 3, 21 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20(2), 163–172 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Q., et al. Single-cell transcriptomic atlas of the human substantia nigra in Parkinson’s disease. bioRxiv: p. 2022.03.25.485846 (2022).Jin, S. et al. Inference and analysis of cell-cell communication using Cell Chat. Nat. Commun. 12(1), 1088 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lin, J. et al. Novel biomarkers predict prognosis and drug-induced neuroendocrine differentiation in patients with prostate cancer. Front. Endocrinol. 13, 1005916 (2022).Article 

Google Scholar 
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32(4), 381–386 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Galper, J. et al. Lipid pathway dysfunction is prevalent in patients with Parkinson’s disease. Brain. 145(10), 3472–3487 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Tkemaladze, T. et al. MSMO1 deficiency: A potentially partially treatable, ultrarare neurodevelopmental disorder with psoriasiform dermatitis, alopecia and polydactyly. Clin. Dysmorphol. 32(3), 97–105 (2023).Article 
PubMed 

Google Scholar 
Kalay Yildizhan, I. et al. New HOMOZYGOUS MISSENSE MSMO1 Mutation in two siblings with SC4MOL deficiency presenting with psoriasiform dermatitis. Cytogenet. Genome Res. 160(9), 523–530 (2020).Article 
CAS 
PubMed 

Google Scholar 
Obeidat, M. et al. The effect of statins on blood gene expression in COPD. PLoS One. 10(10), e0140022 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, X. et al. Brain cholesterol metabolism and Parkinson’s disease. Mov. Disord. 34(3), 386–395 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Alrouji, M. et al. The potential role of cholesterol in Parkinson’s disease neuropathology: Perpetrator or victim. Neurol. Sci. 44(11), 3781–3794 (2023).Article 
PubMed 

Google Scholar 
Garcia Corrales, A. V. et al. Fatty acid elongation by ELOVL6 hampers remyelination by promoting inflammatory foam cell formation during demyelination. Proc. Natl. Acad. Sci. U S A. 120(37), e2301030120 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Matsuzaka, T. et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat. Med. 13(10), 1193–1202 (2007).Article 
CAS 
PubMed 

Google Scholar 
Bergstrom, J. D. The lipogenic enzyme acetoacetyl-CoA synthetase and ketone body utilization for denovo lipid synthesis, a review. J. Lipid Res. 64(8), 100407 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Buckley, B. M. & Williamson, D. H. Acetoacetate and brain lipogenesis: developmental pattern of acetoacetyl-coenzyme A synthetase in the soluble fraction of rat brain. Biochem. J. 132(3), 653–656 (1973).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hasegawa, S., Ikeda, Y., Yamasaki, M. & Fukui, T. The role of acetoacetyl-CoA synthetase, a ketone body-utilizing enzyme, in 3T3-L1 adipocyte differentiation. Biol. Pharm. Bull. 35(11), 1980–1985 (2012).Article 
CAS 
PubMed 

Google Scholar 
Yang, H., Shan, W., Zhu, F., Wu, J. & Wang, Q. Ketone bodies in neurological diseases: Focus on neuroprotection and underlying mechanisms. Front. Neurol. 10, 585 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Norwitz, N. G., Hu, M. T. & Clarke, K. The mechanisms by which the ketone body d-β-hydroxybutyrate may improve the multiple cellular pathologies of Parkinson’s disease. Front. Nutr. 6, 63 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Imgrund, S. et al. Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J. Biol. Chem. 284(48), 33549–33560 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Coetzee, T. et al. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell. 86(2), 209–219 (1996).Article 
CAS 
PubMed 

Google Scholar 
Ross, J. Comments on the article “Persistent confusion of total entropy and chemical system entropy in chemical thermodynamics” [(1996) Proc. Natl. Acad. Sci. USA 93, 7452–7453]. Proc. Natl. Acad. Sci. U S A. 93(25), 14314 (1996) (discussion 14315).Teo, J. D. et al. Early microglial response, myelin deterioration and lethality in mice deficient for very long chain ceramide synthesis in oligodendrocytes. Glia. 71(4), 1120–1141 (2023).Article 
CAS 
PubMed 

Google Scholar 
Casadomé-Perales, Á. et al. Neuronal prosurvival role of ceramide synthase 2 by olidogendrocyte-to-neuron extracellular vesicle transfer. Int. J. Mol. Sci. 24(6), 1 (2023).Article 

Google Scholar 
Couttas, T. A. et al. Loss of ceramide synthase 2 activity, necessary for myelin biosynthesis, precedes tau pathology in the cortical pathogenesis of Alzheimer’s disease. Neurobiol. Aging. 43, 89–100 (2016).Article 
CAS 
PubMed 

Google Scholar 
Su, J. et al. Overexpression of a novel tumor metastasis suppressor gene TMSG1/LASS2 induces apoptosis via a caspase-dependent mitochondrial pathway. J. Cell Biochem. 116(7), 1310–1317 (2015).Article 
CAS 
PubMed 

Google Scholar 
Law, B. A. et al. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. Faseb j. 32(3), 1403–1416 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sassa, T., Suto, S., Okayasu, Y. & Kihara, A. A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim. Biophys. Acta. 1821(7), 1031–1037 (2012).Article 
CAS 
PubMed 

Google Scholar 
Hartmann, D. et al. The equilibrium between long and very long chain ceramides is important for the fate of the cell and can be influenced by co-expression of CerS. Int. J. Biochem. Cell Biol. 45(7), 1195–1203 (2013).Article 
CAS 
PubMed 

Google Scholar 
Jiménez-Salvador, I., Meade, P., Iglesias, E., Bayona-Bafaluy, P. & Ruiz-Pesini, E. Developmental origins of Parkinson disease: Improving the rodent models. Ageing Res. Rev. 86, 101880 (2023).Article 
PubMed 

Google Scholar 
López-Gallardo, E., Iceta, R., Iglesias, E., Montoya, J. & Ruiz-Pesini, E. OXPHOS toxicogenomics and Parkinson’s disease. Mutat. Res. 728(3), 98–106 (2011).Article 
PubMed 

Google Scholar 
Park, M. et al. Low-moderate dose whole-brain γ-ray irradiation modulates the expressions of glial fibrillary acidic protein and intercellular adhesion molecule-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model. Neurobiol. Aging. 132, 175–184 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zigdon, H. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J. Biol. Chem. 288(7), 4947–4956 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cheng, J. et al. Early glycolytic reprogramming controls microglial inflammatory activation. J. Neuroinflamm. 18(1), 129 (2021).Article 
CAS 

Google Scholar 
Tang, L. et al. Expression profiles of long noncoding rnas in intranasal LPS-mediated Alzheimer’s disease model in mice. Biomed. Res. Int. 2019, 9642589 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Spaas, J. et al. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol. Life Sci. 78(10), 4615–4637 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles