A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries

Wang, S., Yan, M., Li, Y., Vinado, C. & Yang, J. Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. J. Power Sources 393, 75–82 (2018).Article 

Google Scholar 
Strauss, F. et al. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries. ACS Energy Lett. 3, 992–996 (2018).Article 

Google Scholar 
Liu, X. et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv. Energy Mater. 11, 2003583 (2021).Article 

Google Scholar 
Park, M., Zhang, X., Chung, M., Less, G. B. & Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904–7929 (2010).Article 

Google Scholar 
Qiu, X.-Y. et al. Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS. Phys. Chem. Chem. Phys. 14, 2617–2630 (2012).Article 

Google Scholar 
Cao, Y. et al. Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 10, 18270–18280 (2018).Article 

Google Scholar 
Li, M. et al. All-in-one ionic–electronic dual-carrier conducting framework thickening all-solid-state electrode. ACS Energy Lett. 7, 766–772 (2022).Article 

Google Scholar 
Dewald, G. F., Ohno, S., Hering, J. G. C., Janek, J. & Zeier, W. G. Analysis of charge carrier transport toward optimized cathode composites for all-solid-state Li−S batteries. Batteries Supercaps 4, 183–194 (2021).Article 

Google Scholar 
Ohta, N. et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006).Article 

Google Scholar 
Jung, S.-K. et al. Understanding the effects of chemical reactions at the cathode–electrolyte interface in sulfide based all-solid-state batteries. J. Mater. Chem. A 7, 22967–22976 (2019).Article 

Google Scholar 
Zhang, W. et al. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl. Mater. Interfaces 10, 22226–22236 (2018).Article 

Google Scholar 
Walther, F. et al. Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries. Chem. Mater. 32, 6123–6136 (2020).Article 

Google Scholar 
Sakai, H., Taniguchi, Y., Uosaki, K. & Masuda, T. Quantitative cross-sectional mapping of nanomechanical properties of composite films for lithium ion batteries using bimodal mode atomic force microscopy. J. Power Sources 413, 29–33 (2019).Article 

Google Scholar 
Maleki Kheimeh Sari, H. & Li, X. Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv. Energy Mater. 9, 1901597 (2019).Article 

Google Scholar 
Amin, R. & Chiang, Y.-M. Characterization of electronic and ionic transport in Li1−xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1−xNi0.50Mn0.20Co0.30O2 (NMC523) as a function of Li content. J. Electrochem. Soc. 163, A1512 (2016).Article 

Google Scholar 
Janek, J., Martin, M. & Becker, K. D. Physical chemistry of solids—the science behind materials engineering: concepts, models, methods. Z. Phys. Chem. 223, 1239–1258 (2009).Article 

Google Scholar 
Kim, Y., Arumugam, N. & Goodenough, J. B. 3D framework structure of a new lithium thiophosphate, LiTi2(PS4)3, as lithium insertion hosts. Chem. Mater. 20, 470–474 (2008).Article 

Google Scholar 
Shin, B. R. & Jung, Y. S. All-solid-state rechargeable lithium batteries using LiTi2(PS4)3 cathode with Li2S-P2S5 solid electrolyte. J. Electrochem. Soc. 161, A154 (2014).Article 

Google Scholar 
Di Stefano, D. et al. Superionic diffusion through frustrated energy landscape. Chem 5, 2450–2460 (2019).Article 

Google Scholar 
Schlem, R. et al. Ionic conductivity of the NASICON-related thiophosphate Na1+xTi2−xGax(PS4)3. Chemistry 25, 4143–4148 (2019).Article 

Google Scholar 
Leube, B. T. et al. Activation of anionic redox in d0 transition metal chalcogenides by anion doping. Nat. Commun. 12, 5485 (2021).Article 

Google Scholar 
Jobic, S., Brec, R. & Rouxel, J. Anionic polymeric bonds in transition metal ditellurides. J. Solid State Chem. 96, 169–180 (1992).Article 

Google Scholar 
Friend, R. H., Jerome, D., Liang, W. Y., Mikkelsen, C. & Yoffe, A. D. Semimetallic character of TiSe2 and semiconductor character of TiS2 under pressure. J. Phys. C 10, L705 (1977).Article 

Google Scholar 
Krauskopf, T. et al. Comparing the descriptors for investigating the influence of lattice dynamics on ionic transport using the superionic conductor Na3PS4–xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).Article 

Google Scholar 
Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).Article 

Google Scholar 
Sakuda, A. et al. A reversible rocksalt to amorphous phase transition involving anion redox. Sci. Rep. 8, 15086 (2018).Article 

Google Scholar 
Yuan, W. & Günter, J. R. Insertion of bivalent cations into monoclinic NbS3 prepared under high pressure and their secondary batteries. Solid State Ion. 76, 253–258 (1995).Article 

Google Scholar 
Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).Article 

Google Scholar 
Lu, P. et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1−xS5I (M=Si, Sn) sulfide solid electrolytes. Nat. Commun. 14, 4077 (2023).Article 

Google Scholar 
Peng, L. et al. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. Chem. Eng. J. 430, 132896 (2022).Article 

Google Scholar 
Ye, L. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).Article 

Google Scholar 
Wang, Y., Ye, L., Chen, X. & Li, X. A two-parameter space to tune solid electrolytes for lithium dendrite constriction. JACS Au 2, 886–897 (2022).Article 

Google Scholar 
Ma, T. et al. High-areal-capacity and long-cycle-life all-solid-state battery enabled by freeze drying technology. Energy Environ. Sci. 16, 2142–2152 (2023).Article 

Google Scholar 
Yan, W. et al. Hard-carbon-stabilized Li–Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy 8, 800–813 (2023).Article 

Google Scholar 
Tan, D. H. S. et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4, 2418–2427 (2019).Article 

Google Scholar 
Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).Article 

Google Scholar 
Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).Article 

Google Scholar 
Xu, X. et al. Self-organized core–shell structure for high-power electrode in solid-state lithium batteries. Chem. Mater. 23, 3798–3804 (2011).Article 

Google Scholar 
Yi, J., Chen, L., Liu, Y., Geng, H. & Fan, L.-Z. High capacity and superior cyclic performances of all-solid-state lithium–sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte. ACS Appl. Mater. Interfaces 11, 36774–36781 (2019).Article 

Google Scholar 
Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).Article 

Google Scholar 
Xu, R. et al. Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density. ACS Energy Lett. 4, 1073–1079 (2019).Article 

Google Scholar 
Kondrakov, A. O. et al. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for li-ion batteries. J. Phys. Chem. C 121, 3286–3294 (2017).Article 

Google Scholar 
Koerver, R. et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).Article 

Google Scholar 
Li, M. et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteries. Adv. Mater. 33, 2008723 (2021).Article 

Google Scholar 
Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).Article 

Google Scholar 
Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).Article 

Google Scholar 
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).Article 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).Article 

Google Scholar 
MedeA 3.9 (Materials Design, 2024).Perdew, J. P., Burke, K. & Ernzerhof, M. Perdew, Burke, and Ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998).Article 

Google Scholar 

Hot Topics

Related Articles