Narrowband clusteroluminescence with 100% quantum yield enabled by through-space conjugation of asymmetric conformation

Zhang, X., Li, J., Ma, C., Zhang, H. & Liu, K. Biomimetic structural proteins: modular assembly and high mechanical performance. Acc. Chem. Res. 56, 2664–2675 (2023).Article 
CAS 
PubMed 

Google Scholar 
Steinhart, M., Wehrspohn, R. B., Gosele, U. & Wendorff, J. H. Nanotubes by template wetting: a modular assembly system. Angew. Chem. Int. Ed. 43, 1334–1344 (2004).Article 
CAS 

Google Scholar 
Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).Article 
CAS 
PubMed 

Google Scholar 
Lu, X. & Chen, Z. F. Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem. Rev. 105, 3643–3696 (2005).Article 
CAS 
PubMed 

Google Scholar 
Yan, L. et al. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 41, 97–114 (2012).Article 
CAS 
PubMed 

Google Scholar 
Bekyarova, E. et al. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene. Acc. Chem. Res. 46, 65–76 (2013).Article 
CAS 
PubMed 

Google Scholar 
Fitzgibbons, T. C. et al. Benzene-derived carbon nanothreads. Nat. Mater. 14, 43–47 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Li, D., Wang, J. & Ma, X. White-light-emitting materials constructed from supramolecular approaches. Adv. Opt. Mater. 6, 1800273 (2018).Article 

Google Scholar 
Takeda, Y., Data, P. & Minakata, S. Alchemy of donor–acceptor–donor multi-photofunctional organic materials: from construction of electron-deficient azaaromatics to exploration of functions. Chem. Commun. 56, 8884–8894 (2020).Article 
CAS 

Google Scholar 
Duan, L., Qiao, J., Sun, Y. & Qiu, Y. Strategies to design bipolar small molecules for OLEDs: donor-acceptor structure and non-donor-acceptor structure. Adv. Mater. 23, 1137–1144 (2011).Article 
CAS 
PubMed 

Google Scholar 
Tang, S. et al. Nonconventional luminophores: characteristics, advancements and perspectives. Chem. Soc. Rev. 50, 12616–12655 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J. et al. Stimuli-responsive AIEgens. Adv. Mater. 33, 2008071 (2021).Article 
CAS 

Google Scholar 
Xu, S., Duan, Y. & Liu, B. Precise molecular design for high-performance luminogens with aggregation-induced emission. Adv. Mater. 32, 1903530 (2020).Article 
CAS 

Google Scholar 
Chen, X., Zhang, X., Xiao, X., Wang, Z. & Zhao, J. Recent developments on understanding charge transfer in molecular electron donor-acceptor systems. Angew. Chem. Int. Ed. 62, e202216010 (2023).Article 
CAS 

Google Scholar 
Hong, X. et al. TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. Chem 8, 1705–1719 (2022).Article 
CAS 

Google Scholar 
Yamaguchi, Y., Matsubara, Y., Ochi, T., Wakamiya, T. & Yoshida, Z. I. How the π conjugation length affects the fluorescence emission efficiency. J. Am. Chem. Soc. 130, 13867–13869 (2008).Article 
CAS 
PubMed 

Google Scholar 
Yang, J. et al. Constitutional isomerism of the linkages in donor–acceptor covalent organic frameworks and its impact on photocatalysis. Nat. Commun. 13, 6317 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, H. & Tang, B. Z. Through-space interactions in clusteroluminescence. JACS Au 1, 1805–1814 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sakhno, T. V., Sakhno, Y. E. & Kuchmiy, S. Y. Clusteroluminescence of unconjugated polymers: a review. Theor. Exp. Chem. 59, 75–106 (2023).Zheng, S., Zhu, T., Wang, Y., Yang, T. & Yuan, W. Z. Accessing tunable afterglows from highly twisted nonaromatic organic AIEgens via effective through-space conjugation. Angew. Chem. Int. Ed. 59, 10018–10022 (2020).Article 
CAS 

Google Scholar 
Li, Q. et al. Through-space charge-transfer polynorbornenes with fixed and controllable spatial alignment of donor and acceptor for high-efficiency blue thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 59, 20174–20182 (2020).Article 
CAS 

Google Scholar 
Zhang, H. et al. Why do simple molecules with “isolated” phenyl rings emit visible light? J. Am. Chem. Soc. 139, 16264–16272 (2017).Article 
CAS 
PubMed 

Google Scholar 
Chu, B. et al. Aliphatic polyesters with white-light clusteroluminescence. J. Am. Chem. Soc. 144, 15286–15294 (2022).Article 
CAS 
PubMed 

Google Scholar 
He, B. et al. Clusteroluminescence from cluster excitons in small heterocyclics free of aromatic rings. Adv. Sci. 8, 2004299 (2021).Article 
CAS 

Google Scholar 
Li, H. et al. As fiber meets with AIE: opening a wonderland for smart flexible materials. Adv. Mater. 35, 2210085 (2023).Article 
CAS 

Google Scholar 
Kong, D., Zhang, K., Tian, J., Yin, L. & Sheng, X. Biocompatible and biodegradable light-emitting materials and devices. Adv. Mater. Technol. 7, 2100006 (2022).Article 
CAS 

Google Scholar 
Liu, J. et al. Through-space interaction of tetraphenylethylene: what, where, and how. J. Am. Chem. Soc. 144, 7901–7910 (2022).Article 
CAS 
PubMed 

Google Scholar 
Feig, V. R., Tran, H. & Bao, Z. Biodegradable polymeric materials in degradable electronic devices. ACS Cent. Sci. 4, 337–348 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, D. et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, 2000619 (2021).Article 
CAS 

Google Scholar 
Ying, L., Ho, C. L., Wu, H., Cao, Y. & Wong, W. Y. White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress. Adv. Mater. 26, 2459–2473 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. et al. Manipulation of clusteroluminescence in carbonyl-based aliphatic polymers. Aggregate 3, e278 (2022).Article 
CAS 

Google Scholar 
Zhang, J. et al. How to manipulate through-space conjugation and clusteroluminescence of simple AIEgens with isolated phenyl rings. J. Am. Chem. Soc. 143, 9565–9574 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, H. et al. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today 32, 275–292 (2020).Article 
CAS 

Google Scholar 
Li, J., Shen, P., Zhao, Z. & Tang, B. Z. Through-space conjugation: a thriving alternative for optoelectronic materials. CCS Chem. 1, 181–196 (2019).Article 
CAS 

Google Scholar 
Liao, P. et al. Generating circularly polarized luminescence from clusterization-triggered emission using solid phase molecular self-assembly. Nat. Commun. 12, 5496 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Q. et al. Pillararene-induced intramolecular through-space charge transfer and single-molecule white-light emission. Angew. Chem. Int. Ed. 61, e202202381 (2022).Article 
ADS 
CAS 

Google Scholar 
Viglianti, L. et al. Unusual through-space interactions between oxygen atoms that mediate inverse morphochromism of an AIE luminogen. Angew. Chem. Int. Ed. 59, 8552–8559 (2020).Article 
CAS 

Google Scholar 
Li, Q. et al. Molecular-level enhanced clusterization-triggered emission of nonconventional luminophores in dilute aqueous solution. Nat. Comm. 14, 409 (2023).Article 
ADS 
CAS 

Google Scholar 
Chu, B. et al. Altering chain flexibility of aliphatic polyesters for yellow-green clusteroluminescence in 38 % quantum yield. Angew. Chem. Int. Ed. 61, e202114117 (2022).Article 
CAS 

Google Scholar 
Zhang, J. et al. Secondary through-space interactions facilitated single-molecule white-light emission from clusteroluminogens. Nat. Commun. 13, 3492 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, Z. et al. NIR clusteroluminescence of non-conjugated phenolic resins enabled by through-space interactions. Angew. Chem. Int. Ed. 62, e202306762 (2023).Article 
CAS 

Google Scholar 
Kim, Y. H., Cho, H. & Lee, T. W. Metal halide perovskite light emitters. Proc. Natl Acad. Sci. USA 113, 11694–11702 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, Z., Zhang, H., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: new vistas at the aggregate level. Angew. Chem. Int. Ed. 59, 9888–9907 (2020).Article 
CAS 

Google Scholar 
Naveen, K. R., Oh, J. H., Lee, H. S. & Kwon, J. H. Tailoring extremely narrow FWHM in hypsochromic and bathochromic shift of polycyclo-heteraborin MR-TADF materials for high-performance OLEDs. Angew. Chem. Int. Ed. 62, e202306768 (2023).Article 
CAS 

Google Scholar 
Qu, Y. K. et al. Steric modulation of spiro structure for highly efficient multiple resonance emitters. Angew. Chem. Int. Ed. 61, e202201886 (2022).Article 
ADS 
CAS 

Google Scholar 
Liu, J. et al. Toward a BT.2020 green emitter through a combined multiple resonance effect and multi-lock strategy. Nat. Commun. 13, 4876 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Song, B. et al. Facile conversion of water to functional molecules and cross-linked polymeric films with efficient clusteroluminescence. Nat. Commun. 14, 3115 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, J. et al. White-light emission from organic aggregates: a review. Adv. Photonics 4, 014001 (2021).Article 
ADS 

Google Scholar 
Shi, C. Y. et al. Dynamic supramolecular H-bonding network with orthogonally tunable clusteroluminescence. Angew. Chem. Int. Ed. 62, e202214422 (2023).Article 
CAS 

Google Scholar 
Xiong, Z., Zhang, J., Sun, J. Z., Zhang, H. & Tang, B. Z. Excited-state odd–even effect in through-space interactions. J. Am. Chem. Soc. 145, 21104–21113 (2023).Article 
CAS 
PubMed 

Google Scholar 
Qiu, W. et al. Afterglow OLEDs incorporating bright closely stacked molecular dimers with ultra-long thermally activated delayed fluorescence. Matter 6, 1231–1248 (2023).Article 
CAS 

Google Scholar 
Madayanad Suresh, S., Hall, D., Beljonne, D., Olivier, Y. & Zysman‐Colman, E. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom-doped nanographenes: recent advances and prospects for organic light-emitting diodes. Adv. Funct. Mater. 30, 1908677 (2020).Article 
CAS 

Google Scholar 
Han, J. et al. Narrowband blue emission with insensitivity to the doping concentration from an oxygen-bridged triarylboron-based TADF emitter: nondoped OLEDs with a high external quantum efficiency up to 21.4%. Chem. Sci. 13, 3402–3408 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, W. et al. An effective approach toward yellow-to-orange multi‐resonance TADF emitters by integrating strong electron donor into B/N-Based polycyclic architecture: high performance OLEDs with nearly 40% EQE. Adv. Funct. Mater. 33, 2213056 (2023).Article 
CAS 

Google Scholar 
Luo, S. et al. Regulation of multiple resonance delayed fluorescence via through-space charge transfer excited state towards high-efficiency and stable narrowband electroluminescence. Angew. Chem. Int. Ed. 62, e202310943 (2023).Article 
CAS 

Google Scholar 
Spackman, M. A. & Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 11, 19–32 (2009).Article 
CAS 

Google Scholar 
Zhang, H. et al. Drawing a clear mechanistic picture for the aggregation-induced emission process. Mater. Chem. Front. 3, 1143–1150 (2019).Article 
CAS 

Google Scholar 
Shuai, Z. & Peng, Q. Organic light-emitting diodes: theoretical understanding of highly efficient materials and development of computational methodology. Natl Sci. Rev. 4, 224–239 (2017).Article 
ADS 
CAS 

Google Scholar 
Tu, W. et al. Manipulation of the through-space interactions in diphenylmethane. Smart Mol. 1, e20220006 (2023).Article 

Google Scholar 
Liu, F. M. et al. Toward narrowband emission: the chemical strategies for modifying boron-based luminescent materials. J. Mater. Chem. C. 11, 11425–11439 (2023).Article 
ADS 
CAS 

Google Scholar 
Kondo, Y. et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photonics 13, 678–682 (2019).Article 
ADS 
CAS 

Google Scholar 
Naveen, K. R., Hwang, S. J., Lee, H. & Kwon, J. H. Narrow band red emission fluorophore with reasonable multiple resonance effect. Adv. Electron. Mater. 8, 2101114 (2022).Article 
CAS 

Google Scholar 
Liao, X. J. et al. Planar chiral multiple resonance thermally activated delayed fluorescence materials for efficient circularly polarized electroluminescence. Angew. Chem. Int. Ed. 62, e202217045 (2023).Article 
CAS 

Google Scholar 
Frisch, M. J. et al. Gaussian 16, Vol. 300 (Gaussian, Inc., 2016).Shuai, Z. Thermal vibration correlation function formalism for molecular excited state decay rates. Chin. J. Chem. 38, 1223–1232 (2020).Article 
CAS 

Google Scholar 
Shuai, Z. & Peng, Q. Excited states structure and processes: understanding organic light-emitting diodes at the molecular level. Phys. Rep. 537, 123–156 (2014).Article 
ADS 
CAS 

Google Scholar 
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article 
PubMed 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. VMD-visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles