Combination of optical coherence tomography-derived shape and texture features are associated with development of sub-foveal geographic atrophy in dry AMD

Klein, R., Klein, B., Jensen, S. & Meuer, S. The five-year incidence and progression of age-related maculopathy: The beaver dam eye study. Ophthalmology. 104, 7–21 (1997).Article 
CAS 
PubMed 

Google Scholar 
Fleckenstein, M. et al. The progression of geographic atrophy secondary to age-related macular degeneration. Ophthalmology 125(3), 369–390. https://doi.org/10.1016/j.ophtha.2017.08.038 (2018).Article 
PubMed 

Google Scholar 
Somasundaran, S., Constable, I. J., Mellough, C. B. & Carvalho, L. S. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin. Exp. Ophthalmol. 48(8), 1043–1056. https://doi.org/10.1111/ceo.13834 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Reiter, G. S. et al. Subretinal drusenoid deposits and photoreceptor loss detecting global and local progression of geographic atrophy by SD-OCT imaging. Invest. Ophthalmol. Vis. Sci. 61(6), 11. https://doi.org/10.1167/iovs.61.6.11 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Keenan, T. D. et al. Progression of geographic atrophy in age-related macular degeneration: AREDS2 report number 16. Ophthalmology. 125(12), 1913–1928. https://doi.org/10.1016/j.ophtha.2018.05.028 (2018).Article 
PubMed 

Google Scholar 
Sayegh, R. G. et al. Geographic atrophy and foveal-sparing changes related to visual acuity in patients with dry age-related macular degeneration over time. Am. J. Ophthalmol. 179, 118–128. https://doi.org/10.1016/j.ajo.2017.03.031 (2017) (Epub 2017 Apr 4 PMID: 28385474).Article 
PubMed 

Google Scholar 
Boyer, D. S., Schmidt-Erfurth, U., van Lookeren, C. M., Henry, E. C. & Brittain, C. The pathophysiology of geographic atrophy secondary to age-related macular degeneration and the complement pathway as a therapeutic target. Retina. 37(5), 819–835. https://doi.org/10.1097/IAE.0000000000001392 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, Q. et al. Restricted summed-area projection for geographic atrophy visualization in SD-OCT images. Trans. Vis. Sci. Tech. 4(5), 2. https://doi.org/10.1167/tvst.4.5.2 (2015).Article 

Google Scholar 
Niu, S., de Sisternes, L., Chen, Q., Rubin, D. L. & Leng, T. Fully automated prediction of geographic atrophy growth using quantitative spectral-domain optical coherence tomography biomarkers. Ophthalmology. 123(8), 1737–1750. https://doi.org/10.1016/j.ophtha.2016.04.042 (2016).Article 
PubMed 

Google Scholar 
Schmidt-Erfurth, U. et al. Role of deep learning-quantified hyperreflective foci for the prediction of geographic atrophy progression. Am. J. Ophthalmol. 216, 257–270. https://doi.org/10.1016/j.ajo.2020.03.042 (2020).Article 
PubMed 

Google Scholar 
Reiter, G. S. et al. Subretinal drusenoid deposits and photoreceptor loss detecting global and local progression of geographic atrophy by SD-OCT imaging. Investig. Ophthalmol. Visual Sci. 61(6), 11–11 (2020).Article 
CAS 

Google Scholar 
Sarici, K. et al. Risk classification for progression to subfoveal geographic atrophy in dry age-related macular degeneration using machine learning-enabled outer retinal feature extraction. Ophthalmic Surg. Lasers Imaging Retina. 53(1), 31–39. https://doi.org/10.3928/23258160-20211210-01 (2022) (Epub 2022 Jan 1 PMID: 34982004).Article 
PubMed 

Google Scholar 
Arslan, J. et al. Artificial intelligence algorithms for analysis of geographic atrophy: A review and evaluation. Transl. Vis. Sci. Technol. 9(2), 57. https://doi.org/10.1167/tvst.9.2.57 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Sunness, J. S. et al. Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. Ophthalmology 106, 1768–1779 (1999).Article 
CAS 
PubMed 

Google Scholar 
Lindblad, A. S., Lloyd, P. C. & Clemons, T. E. Change in area of geographic atrophy in the age-related eye disease study. Arch Ophthalmol. 127, 1168–1174 (2009).Article 
PubMed 

Google Scholar 
Joachim, N. et al. Incidence and progression of geographic atrophy: Observations from a populationbased cohort. Ophthalmology 120, 2042–2050 (2013).Article 
PubMed 

Google Scholar 
Xu, L. et al. Reticular macular disease is associated with multilobular geographic atrophy in age-related macular degeneration. Retina 33, 1850–1862 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhihong, H. et al. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images. Invest. Ophthalmol. Vis. Sci. 54(13), 8375–8383. https://doi.org/10.1167/iovs.13-12552 (2013).Article 

Google Scholar 
Baish, J. W. & Jain, R. K. Fractals and cancer. Cancer Res. 60, 3683–3688 (2000).CAS 
PubMed 

Google Scholar 
Park, Y. W. et al. Magnetic resonance imaging-based 3-dimensional fractal dimension and lacunarity analyses may predict the meningioma grade. Eur. Radiol. 30, 4615–4622. https://doi.org/10.1007/s00330-020-06788-8 (2020).Article 
PubMed 

Google Scholar 
Rodríguez, J. O. et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med. Phys. 10, 1. https://doi.org/10.1186/1756-6649-10-1 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Bizzarri, M. et al. Fractal analysis in a systems biology approach to cancer. Semin. Cancer Biol. 21, 175–182. https://doi.org/10.1016/j.semcancer.2011.04.002 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Avakian, A. et al. Fractal analysis of region-based vascular change in the normal and non-proliferative diabetic retina. Curr. Eye Res. 24, 274–280. https://doi.org/10.1076/ceyr.24.4.274.8411 (2002).Article 
PubMed 

Google Scholar 
Gardiner, T. A., Archer, D. B., Curtis, T. M. & Stitt, A. W. Arteriolar involvement in the microvascular lesions of diabetic retinopathy: Implications for pathogenesis. Microcirculation. 14, 25–38. https://doi.org/10.1080/10739680601072123 (2007).Article 
PubMed 

Google Scholar 
Grauslund, J. et al. Retinal vascular fractals and microvascular and macrovascular complications in type 1 diabetes. Ophthalmology. 117, 1400–1405. https://doi.org/10.1016/j.ophtha.2009.10.047 (2010).Article 
PubMed 

Google Scholar 
Doan NT, van Rooden S, Versluis MJ, Buijs M, Webb AG, van der Grond J, et al. An automated tool for cortical feature analysis: Application to differences on 7 Tesla T2 (*)-weighted images between young and older healthy subjects. Magn. Reson. Med. 1–9 (2014).Braverman, B. & Tambasco, M. Scale-specific multifractal medical image analysis. Comput. Math. Methods Med. 2013, 262931. https://doi.org/10.1155/2013/262931 (2013).Article 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar 
Captur, G. et al. Fractal frontiers in cardiovascular magnetic resonance: Towards clinical implementation. J. Cardiovasc. Magn. Reson. 17, 80. https://doi.org/10.1186/s12968-015-0179-0 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Kar, S. S. et al. Novel fractal-based sub-RPE compartment OCT radiomics biomarkers are associated with subfoveal geographic atrophy in dry AMD. IEEE Trans. Biomed. Eng. 70(10), 2914–2921. https://doi.org/10.1109/TBME.2023.3270201 (2023).Article 
PubMed 

Google Scholar 
Sil Kar, S. et al. Multi-compartment spatially-derived radiomics from optical coherence tomography predict anti-VEGF treatment durability in macular edema secondary to retinal vascular disease: Preliminary findings. IEEE J. Transl. Eng. Health Med. 12(9), 1000113. https://doi.org/10.1109/JTEHM.2021.3096378 (2021).Article 

Google Scholar 
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/Penzias, G. et al. Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings. PLoS One. 13(8), e0200730. https://doi.org/10.1371/journal.pone.0200730 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Itoh, Y. et al. Volumetric ellipsoid zone mapping for enhanced visualisation of outer retinal integrity with optical coherence tomography. Br. J. Ophthalmol. 100(3), 295–299 (2016).Article 
PubMed 

Google Scholar 
Abraham, J. R. et al. Longitudinal assessment of ellipsoid zone mapping parameters in retinal venous occlusive disease with associated macular edema. J. VitreoRetinal Diseases. 5(1), 40–45 (2021).Article 

Google Scholar 
Abdechiri, M., Faez, K. & Amindavar, H. Visual object tracking with online weighted chaotic multiple instance learning. Neurocomputing. 247, 16–30 (2017).Article 

Google Scholar 
Al-Zainaldin, S., Glover, P. W. J. & Lorinczi, P. Synthetic fractal modelling of heterogeneous and anisotropic reservoirs for use in simulation studies: Implications on their hydrocarbon recovery prediction. Transp. Porous Media. 116, 181–212. https://doi.org/10.1007/s11242-016-0770-3 (2017).Article 
CAS 
PubMed 

Google Scholar 
Nayak, S. R., Mishra, J. & Mohan, J. P. Fractal analysis of image sets using differential box counting techniques. Int. J. Inf. Technol. 10, 39–47 (2018).
Google Scholar 
J. Zhang (2022). Calculation of fractal dimension of a 3D volume using fft (https://www.mathworks.com/matlabcentral/fileexchange/6964-calculation-of-fractal-dimension-of-a-3d-volume-using-fft), MATLAB Central File Exchange. Retrieved January 3, 2022.Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybernetics. 3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314 (1973).Article 

Google Scholar 
Laws KI. Textured image segmentation. University of Southern California Los Angeles Image Processing Inst, 1980 Jan. Report No.: USCIPI-940. http://www.dtic.mil/docs/citations/ADA083283. Accessed November 24, 2016.A. K. Jain and F. Farrokhnia. (1990) Unsupervised texture segmentation using Gabor filters. in 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, Los Angeles, CA, USA., pp. 14–19. https://doi.org/10.1109/ICSMC.1990.142050.Prasanna, P. et al. Co-occurrence of local anisotropic gradient orientations (CoLlAGe): A new radiomics descriptor. Sci. Rep. 6, 37241. https://doi.org/10.1038/srep37241 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Radovic, M. et al. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinform. 18, 9. https://doi.org/10.1186/s12859-016-1423-9 (2017).Article 

Google Scholar 
Niu, S., de Sisternes, L., Chen, Q., Leng, T. & Rubin, D. L. Automated geographic atrophy segmentation for SD-OCT images using region-based C-V model via local similarity factor. Biomed. Opt. Express. 7, 581–600 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Pfau, M. et al. Prognostic value of shape-descriptive factors for the progression of geographic atrophy secondary to age-related macular degeneration. Retina 39(8), 1527–1540. https://doi.org/10.1097/IAE.0000000000002206 (2019).Article 
PubMed 

Google Scholar 
Liefers, B. et al. A deep learning model for segmentation of geographic atrophy to study its long-term natural history. Ophthalmology. 127(8), 1086–1096 (2020).Article 
PubMed 

Google Scholar 
Anegondi, N. et al. Deep learning to predict geographic atrophy area and growth rate from multimodal imaging. Ophthalmol. Retina 7(3), 243–252. https://doi.org/10.1016/j.oret.2022.08.018 (2023).Article 
PubMed 

Google Scholar 
Dow, E. R. et al. A deep-learning algorithm to predict short-term progression to geographic atrophy on spectral-domain optical coherence tomography. JAMA Ophthalmol. https://doi.org/10.1001/jamaophthalmol.2023.4659 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Dong, V. et al. Evaluating the utility of deep learning for predicting therapeutic response in diabetic eye disease. Front. Ophthalmol. (Lausanne). 2, 852107. https://doi.org/10.3389/fopht.2022.852107 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Prasanna, P. et al. Radiomics-based assessment of ultra-widefield leakage patterns and vessel network architecture in the PERMEATE study: Insights into treatment durability. Br. J. Ophthalmol. 105(8), 1155–1160 (2021).Article 
PubMed 

Google Scholar 
Zanzottera, E. C. et al. Visualizing retinal pigment epithelium phenotypes in the transition to atrophy in neovascular age-related macular degeneration. Retina. 36(Suppl 1), S26–S39. https://doi.org/10.1097/IAE.0000000000001330 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Sarks, J. P., Sarks, S. H. & Killingsworth, M. C. Evolution of geographic atrophy of the retinal pigment epithelium. Eye. 2, 552–577 (1988).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles