n-Alkanes formed by methyl-methylene addition as a source of meteoritic aliphatics

Alexander, C. M. O., Fogel, M., Yabuta, H. & Cody, G. D. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380–4403 (2007).Article 
CAS 

Google Scholar 
Sabbah, H. et al. Detection of cosmic fullerenes in the Almahata Sitta Meteorite: are they an interstellar heritage? Astrophys. J. 931, 91 (2022).Article 

Google Scholar 
Sandra, P. et al. The organic content of the Tagish lake meteorite. Science 293, 2236–2239 (2001).Article 

Google Scholar 
Botta, O. & Bada, J. L. Extraterrestrial organic compounds in meteorites. Surv. Geophys. 23, 411–467 (2002).Article 

Google Scholar 
Glavin, D. P. et al. in Primitive Meteorites and Asteroids Physical, Chemical and Spectroscopic Observations Paving the Way to Exploration (ed. Abreu, N.) 205–271 (Elsevier, 2018).Nooner, D. W. & Oró, J. Organic compounds in meteorites—I. Aliphatic hydrocarbons. Geochim. Cosmochim. Acta 31, 1359–1394 (1967).Article 
CAS 

Google Scholar 
Martins, Z., Modica, P., Zanda, B. & d’Hendecourt, L. L. S. The amino acid and hydrocarbon contents of the Paris meteorite: insights into the most primitive CM chondrite. Meteorit. Planet. Sci. 50, 926–943 (2015).Article 
CAS 

Google Scholar 
Mumma, M. J. et al. Detection of abundant ethane and methane, along with carbon monoxide and water, in Comet C/1996 B2 hyakutake: evidence for interstellar origin. Science 272, 1310–1314 (1996).Article 
CAS 
PubMed 

Google Scholar 
Sephton, M. A., Pillinger, C. T. & Gilmour, I. Normal alkanes in meteorites: molecular δ13C values indicate an origin by terrestrial contamination. Precambrian Res. 106, 47–58 (2001).Article 
CAS 

Google Scholar 
Joblin, C., Szczerba, R., Berné, O. & Szyszka, C. Carriers of the mid-IR emission bands in PNe reanalysed. Astron. Astrophys. 490, 189–196 (2008).Article 
CAS 

Google Scholar 
Kwok, S. & Zhang, Y. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 479, 80–83 (2011).Article 
PubMed 

Google Scholar 
Kwok, S., Volk, K. & Bernath, P. On the origin of infrared plateau features in Proto–Planetary Nebulae. Astrophys. J. 554, L87–L90 (2001).Article 
CAS 

Google Scholar 
Sloan, G. C. et al. The unusual hydrocarbon emission from the early carbon star HD 100764: the connection between aromatics and aliphatics. Astrophys. J. 664, 1144–1153 (2007).Article 

Google Scholar 
Raponi, A. et al. Infrared detection of aliphatic organics on a cometary nucleus. Nat. Astron. 4, 500–505 (2020).Article 

Google Scholar 
Pilorget, C. et al. First compositional analysis of Ryugu samples by the MicrOmega hyperspectral microscope. Nat. Astron. 6, 221–225 (2022).Article 

Google Scholar 
Sandford, S. A. et al. Organics captured from Comet 81P/Wild 2 by the stardust spacecraft. Science 314, 1720–1724 (2006).Article 
CAS 
PubMed 

Google Scholar 
Ito, M. et al. Hayabusa2 returned samples: a unique and pristine record of outer Solar System materials from asteroid Ryugu. Nat. Astron. 6, 1163–1171 (2022).Article 

Google Scholar 
Tachibana, S. et al. Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth. Science 375, 1011–1016 (2022).Article 
CAS 
PubMed 

Google Scholar 
De Sanctis, M. C. et al. Localized aliphatic organic material on the surface of Ceres. Science 355, 719–722 (2017).Article 
PubMed 

Google Scholar 
Schuhmann, M. et al. Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA. Astron. Astrophys. 630, A31 (2019).Pizzarello, S., Yarnes, C. T. & Cooper, G. The Aguas Zarcas (CM2) meteorite: new insights into early solar system organic chemistry. Meteorit. Planet. Sci. 55, 1525–1538 (2020).Article 
CAS 

Google Scholar 
Ito, M. et al. A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample. Nat. Astron. 6, 1163–1171 (2022).Article 

Google Scholar 
Dartois, E. et al. Chemical composition of carbonaceous asteroid Ryugu from synchrotron spectroscopy in the mid- to far-infrared of Hayabusa2-returned samples. Astron. Astrophys. 671, A2 (2023).Yabuta, H. et al. Macromolecular organic matter in samples of the asteroid (162173) Ryugu. Science 379, eabn9057 (2024).Article 

Google Scholar 
Studier, M. H., Hayatsu, R. & Anders, E. Origin of organic matter in early solar system—I. Hydrocarbons. Geochim. Cosmochim. Acta 32, 151–173 (1968).Article 
CAS 

Google Scholar 
Sephton, M. A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 19, 292–311 (2002).Article 
CAS 
PubMed 

Google Scholar 
Navarro, V., van Spronsen, M. A. & Frenken, J. W. M. In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst. Nat. Chem. 8, 929 (2016).Article 
CAS 
PubMed 

Google Scholar 
Böller, B., Durner, K. M. & Wintterlin, J. The active sites of a working Fischer–Tropsch catalyst revealed by operando scanning tunnelling microscopy. Nat. Catal. 2, 1027–1034 (2019).Article 

Google Scholar 
Llorca, J. & Casanova, I. Formation of carbides and hydrocarbons in chondritic interplanetary dust particles: a laboratory study. Meteorit. Planet. Sci. 33, 243–251 (1998).Article 
CAS 

Google Scholar 
Kress, M. E. & Tielens, A. G. G. M. The role of Fischer-Tropsch catalysis in solar nebula chemistry. Meteorit. Planet. Sci. 36, 75–91 (2001).Article 
CAS 

Google Scholar 
Ferrante, R. F., Moore, M. H., Nuth, J. A. & Smith, T. Laboratory studies of catalysis of CO to organics on grain analogs. Icarus 145, 297–300 (2000).Article 
CAS 

Google Scholar 
Sekine, Y. et al. An experimental study on Fischer-Tropsch catalysis: Implications for impact phenomena and nebular chemistry. Meteorit. Planet. Sci. 41, 715–729 (2006).Article 
CAS 

Google Scholar 
Cabedo, V., Llorca, J., Trigo-Rodriguez, J. M. & Rimola, A. Study of Fischer–Tropsch-type reactions on chondritic meteorites. Astron. Astrophys. 650, A160 (2021).Pareras, G., Cabedo, V., McCoustra, M. & Rimola, A. Single-atom catalysis in space: Computational exploration of Fischer–Tropsch reactions in astrophysical environments. Astron. Astrophys. 680, A57 (2023).Abplanalp, M. J., Jones, B. M. & Kaiser, R. I. Untangling the methane chemistry in interstellar and solar system ices toward ionizing radiation: a combined infrared and reflectron time-of-flight analysis. Phys. Chem. Chem. Phys. 20, 5435–5468 (2018).Article 
CAS 
PubMed 

Google Scholar 
Jones, B. M. & Kaiser, R. I. Application of reflectron time-of-flight mass spectroscopy in the analysis of astrophysically relevant ices exposed to ionization radiation: methane (CH4) and D4-methane (CD4) as a case study. J. Phys. Chem. Lett. 4, 1965–1971 (2013).Article 
CAS 
PubMed 

Google Scholar 
Martínez, L. et al. Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nat. Astron. 4, 97–105 (2020).Article 
PubMed 

Google Scholar 
Martínez, L. et al. Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. Nat. Commun. 12, 5937 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Accolla, M. et al. Silicon and hydrogen chemistry under laboratory conditions mimicking the atmosphere of evolved stars. Astrophys. J. 906, 44 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Santoro, G. et al. The chemistry of cosmic dust analogs from C, C2, and C2H2 in C-rich circumstellar envelopes. Astrophys. J. 895, 97 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Merino, P. et al. Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation. Nat. Commun. 5, 3054 (2014).Hornekær, L. et al. Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett. 96, 156104 (2006).Article 
PubMed 

Google Scholar 
Schulz, F. et al. Imaging Titan’s organic haze at atomic scale. Astrophys. J. 908, L13 (2021).Article 
CAS 

Google Scholar 
Zhong, D. et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).Article 
CAS 
PubMed 

Google Scholar 
Wang, S. et al. On-surface synthesis and characterization of individual polyacetylene chains. Nat. Chem. 11, 924–930 (2019).Article 
CAS 
PubMed 

Google Scholar 
Yamada, R. & Uosaki, K. Two-dimensional crystals of alkanes formed on Au(111) surface in neat liquid:  structural investigation by scanning tunneling microscopy. J. Phys. Chem. B 104, 6021–6027 (2000).Article 
CAS 

Google Scholar 
Zhang, H.-M., Xie, Z.-X., Mao, B.-W. & Xu, X. Self-assembly of normal alkanes on the Au (111) surfaces. Chem. A Eur. J. 10, 1415–1422 (2004).Article 
CAS 

Google Scholar 
Schuler, B., Meyer, G., Peña, D., Mullins, O. C. & Gross, L. Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Am. Chem. Soc. 137, 9870–9876 (2015).Article 
CAS 
PubMed 

Google Scholar 
Gross, L. et al. Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2, 821–825 (2010).Article 
CAS 
PubMed 

Google Scholar 
Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).Article 
CAS 
PubMed 

Google Scholar 
Gross, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 57, 3888–3908 (2018).Article 
CAS 

Google Scholar 
Schuler, B. et al. Characterizing aliphatic moieties in hydrocarbons with atomic force microscopy. Chem. Sci. 8, 2315–2320 (2017).Article 
CAS 
PubMed 

Google Scholar 
Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299–1301 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kaiser, K. et al. Visualization and identification of single meteoritic organic molecules by atomic force microscopy. Meteorit. Planet. Sci. 57, 644–656 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wetterer, S. M., Lavrich, D. J., Cummings, T., Bernasek, S. L. & Scoles, G. Energetics and kinetics of the physisorption of hydrocarbons on Au(111). J. Phys. Chem. B 102, 9266–9275 (1998).Article 
CAS 

Google Scholar 
Kissin, Y. V. Hydrocarbon components in carbonaceous meteorites. Geochim. Cosmochim. Acta 67, 1723–1735 (2003).Article 
CAS 

Google Scholar 
Zhao, L. et al. Pyrene synthesis in circumstellar envelopes and its role in the formation of 2D nanostructures. Nat. Astron. 2, 413–419 (2018).Article 

Google Scholar 
Zhao, L. et al. Molecular mass growth through ring expansion in polycyclic aromatic hydrocarbons via radical–radical reactions. Nat. Commun. 10, 3689 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Ravagnan, L. et al. sp hybridization in free carbon nanoparticles—presence and stability observed by near edge X-ray absorption fine structure spectroscopy. Chem. Commun. 47, 2952–2954 (2011).Article 
CAS 

Google Scholar 
Weijun, G. et al. Visualization of on-surface ethylene polymerization through ethylene insertion. Science 375, 1188–1191 (2022).Article 

Google Scholar 
Hall, D. N. B. & Ridgway, S. T. Circumstellar methane in the infrared spectrum of IRC+10°216. Nature 273, 281–282 (1978).Article 
CAS 

Google Scholar 
Polehampton, E. T., Menten, K. M., Brünken, S., Winnewisser, G. & Baluteau, J.-P. Far-infrared detection of methylene. Astron. Astrophys. 431, 203–213 (2005).Article 
CAS 

Google Scholar 
Berné, O. et al. Formation of the methyl cation by photochemistry in a protoplanetary disk. Nature 621, 56–59 (2023).Article 
PubMed 

Google Scholar 
Agúndez, M., Martínez, J. I., de Andres, P. L., Cernicharo, J. & Martín-Gago, J. A. Chemical equilibrium in AGB atmospheres: successes, failures, and prospects for small molecules, clusters, and condensates. Astron. Astrophys. 637, A59. (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Cherchneff, I. The inner wind of IRC+10216 revisited: new exotic chemistry and diagnostic for dust condensation in carbon stars. Astron. Astrophys. 545, A12 (2012).Agúndez, M., Roueff, E., Le Petit, F. & Le Bourlot, J. The chemistry of disks around T Tauri and Herbig Ae/Be stars. Astron. Astrophys. 616, A19 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Chiar, J. E., Pendleton, Y. J., Geballe, T. R. & Tielens, A. G. G. M. Near‐infrared spectroscopy of the Proto–Planetary Nebula CRL 618 and the origin of the hydrocarbon dust component in the interstellar medium. Astrophys. J. 507, 281–286 (1998).Article 
CAS 
PubMed 

Google Scholar 
Goto, M. et al. Spatially resolved 3 micron spectroscopy of IRAS 22272+5435: formation and evolution of aliphatic hydrocarbon dust in proto–planetary nebulae. Astrophys. J. 589, 419–429 (2003).Article 
CAS 

Google Scholar 
Pilleri, P., Joblin, C., Boulanger, F. & Onaka, T. Mixed aliphatic and aromatic composition of evaporating very small grains in NGC 7023 revealed by the 3.4/3.3 μm ratio. Astron. Astrophys. 577, A16 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Jones, A. P. et al. The evolution of amorphous hydrocarbons in the ISM: dust modelling from a new vantage point. Astron. Astrophys. 558 (2013).Martínez, L. et al. Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Sci. Rep. 8, 7250 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Santoro, G. et al. INFRA-ICE: an ultra-high vacuum experimental station for laboratory astrochemistry. Rev. Sci. Instrum. 91, 124101 (2020).Article 
CAS 
PubMed 

Google Scholar 
Andriamaharavo, N. R. Retention Data NIST Mass Spectrometry Data Center. Retrieved March 17, 2015 (NIST Mass Spectrometry Data Center, 2014).Frisch, M. J. et al. Gaussian∼ 09 Revision D. 01. (Science Open, 2014).Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).Article 
CAS 

Google Scholar 
Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).Article 
CAS 

Google Scholar 
Kardar, M. Statistical Physics of Particles (Cambridge University Press, 2007).Peng, C. & Bernhard Schlegel, H. Combining synchronous transit and Quasi-Newton methods to find transition states. Isr. J. Chem. 33, 449–454 (1993).Article 
CAS 

Google Scholar 
Krishnamurthy, R. V., Epstein, S., Cronin, J. R., Pizzarello, S. & Yuen, G. U. Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta 56, 4045–4058 (1992).Article 
CAS 
PubMed 

Google Scholar 
Cronin, J. R. & Pizzarello, S. Aliphatic hydrocarbons of the Murchison meteorite. Geochim. Cosmochim. Acta 54, 2859–2868 (1990).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles