Influence of calcination temperature and particle size distribution on the physical properties of SrFe12O19 and BaFe12O19 hexaferrite powders

Qiu, J., Zhang, Q. & Gu, M. Effect of aluminum substitution on microwave absorption properties of barium hexaferrite. J. Appl. Phys. 98(10), 103905 (2005).Article 
ADS 

Google Scholar 
Dishovske, N., Petkov, A. & Nedkov, I. Hexaferrite contribution to microwave absorbers characteristics. IEEE Trans. Magn. 30(2), 969–971 (1994).Article 
ADS 

Google Scholar 
Langhof, N. & Göbbels, M. Hexaferrites and phase relations in the iron-rich part of the system Sr–La–Co–Fe–O. J. Solid State Chem. 182(10), 2725–2732 (2009).Article 
ADS 
CAS 

Google Scholar 
Shirk, B. T. & Bussem, W. R. Temperature dependence of Ms and K1 of BaFe12O19 and SrFe12O19 single crystals. J. Appl. Phys. 40, 1294 (1969).Article 
ADS 
CAS 

Google Scholar 
Topfer, J., Schwarzer, S., Senz, S. & Hesse, D. Influence of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite. J. Eur. Ceram. Soc. 25, 1681–1688 (2005).Article 

Google Scholar 
Zi, Z. F. et al. Magnetic properties of c-axis oriented Sr0.8La0.2Fe11.8Co0.2O1.9 ferrite film prepared by chemical solution deposition. J. Magn. Magn. Mater. 322(22), 3638–3641 (2010).Article 
ADS 
CAS 

Google Scholar 
Morisako, A., Liu, X. & Matsumoto, M. The effect of underlayer for Ba-ferrite sputtered films on-axis orientation. J. Appl. Phys. 81, 4374 (1997).Article 
ADS 
CAS 

Google Scholar 
Wane, I. et al. Thick barium hexaferrite (Ba-M) films prepared by electron-beam evaporation for microwave application. J. Magn. Magn. Mater. 211(1–3), 309–313 (2000).Article 
ADS 
CAS 

Google Scholar 
Oliver, S. A., Yoon, S. D., Kozulin, I., Chen, M. L. & Vittoria, C. Growth and characterization of thick oriented barium hexaferrite films on MgO (111) substrates. Appl. Phys. Lett. 76(24), 3612 (2000).Article 
ADS 
CAS 

Google Scholar 
Shater, R. E. E. & El-Ghayyawz, E. H. Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19. J. Alloys Compd. 739, 327–334 (2018).Article 

Google Scholar 
Richerson, D. R., Garcia, R. M., Ruiz, E. R., Rams, E. E. & Sanchez, R. M. Modern Ceramic Engineering (Marcel Dekker, 1992).
Google Scholar 
Castro, S. et al. Structural and magnetic properties of barium hexaferrite nanostructured particles prepared by the combustion method. J. Magn. Magn. Mater. 152, 61–69 (1996).Article 
ADS 
CAS 

Google Scholar 
Céspedes, E. et al. Inter-grain effects on the magnetism of M-type strontium ferrite. J. Alloys Compd. 692, 280–287 (2017).Article 

Google Scholar 
Saini, A. et al. Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range. Eng. Sci. Technol. Int. J. 19(2), 911–916 (2016).MathSciNet 

Google Scholar 
Tan, G. & Chen, X. Structure and multiferroic properties of barium hexaferrite ceramics. J. Magn. Magn. Mater. 327, 87–90 (2013).Article 
ADS 
CAS 

Google Scholar 
Li, L. et al. Attractive microwave-absorbing properties of M-BaFe12O19 ferrite. J. Alloys Compd. 557, 11–17 (2013).Article 
CAS 

Google Scholar 
Li, J. et al. Microstructure, magnetic and low-frequency microwave absorption properties of doped Co–Ti hexagonal barium ferrite nanoparticles. Ceram. Int. 47(13), 19247–19253 (2021).Article 
CAS 

Google Scholar 
Zegzulka, J., Jezerska, L., Liptakova, T., Hlosta, J. & Necas, J. Study of structural and selected mechanical/physical properties of metal powders. Proceedings of the METAL 2015: 24th International Conference on Metallurgy and Materials. 1457–1462, (2015).Hlosta, J., Zurovec, D., Zidek, M. & Zegzulka, J. Mechanical properties of powdered coal and their influence to technological processes. Inzynieria Mineralna-J. Pol. Min. Eng. Soc. 2, 107–112 (2014).
Google Scholar 
Dippong, T., Levei, E. A., Toloman, D., Barbu-Tudoran, L. & Cadar, O. Investigation on the formation, structural and photocatalytic properties of mixed Mn-Zn ferrites nanoparticles embedded in SiO2 matrix. J. Anal. Appl. Pyrolysis 158, 105281 (2021).Article 
CAS 

Google Scholar 
Dippong, T., Levei, E. A., Goga, F. & Cadar, O. Influence of Mn2+ substitution with Co2+ on structural, morphological and coloristic properties of MnFe2O4/SiO2 nanocomposites. Mater. Charact. 172, 110835 (2021).Article 
CAS 

Google Scholar 
Dippong, T., Levei, E. A., Deac, G., Petean, L. & Borodi, G. Sol-gel synthesis, structure, morphology and magnetic properties of Ni0.6Mn0.4Fe2O4 nanoparticles embedded in SiO2 matrix. Nanomaterials 11(12), 3455 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dippong, T., Toloman, D., Dan, M., Levei, E. A. & Cadar, O. Structural, morphological and photocatalytic properties of Ni-Mn ferrites: Influence of the Ni:Mn ratio. J. Alloys Compd. 913, 165129 (2022).Article 
CAS 

Google Scholar 
Mahgoob, A. & Hudeish, A. Y. Thermal annealing effect on the structural and magnetic properties of barium hexaferrite powders. Middle East J. Sci. Res. 15(6), 834–839 (2013).
Google Scholar 
Brightlin, B. C. & Balamurugan, S. The effect of post annealing treatment on the citrate sol–gel derived nanocrystalline BaFe12O19 powder: Structural, morphological, optical and magnetic properties. Appl. Nanosci. 6, 1199–1210 (2016).Article 
ADS 
CAS 

Google Scholar 
Castelliz, L. M., Kim, K. M. & Boucher, P. S. Preparation, stability range and high frequency permeability of some ferroxplana compounds. J. Can. Ceram. Soc. 38, 57 (1969).CAS 

Google Scholar 
Neckenburger, E., Severin, H., Vogel, J. K. & Winkler, G. Z. Angew Ferrite hexagonaler Kristallstrustur mit hoher Grenzfre-quenz. Z. Angew Phys. 18, 65 (1964).
Google Scholar 
Vinnik, M. A. Phase relationships in the BaO-CoO-Fe2O3 system. Russ. J. Inorg. Chem. 10, 1164–1167 (1965).
Google Scholar 
Kuznetsova, S. I., Naiden, E. P. & Stepanova, T. N. Topotactic reaction kinetics in the formation of the hexagonal ferrite Ba3Co2Fe24O41. Inorg. Mater. 24, 856 (1988).
Google Scholar 
Drobek, J., Bigelow, W. C. & Wells, R. G. Electron microscopic studies of growth structures in hexagonal ferrites. J. Am. Ceram. Soc. 44, 262 (1961).Article 
CAS 

Google Scholar 
Shashanka, H. M., Anantharamaiah, P. N. & Joy, P. A. Magnetic parameters of SrFe12O19 sintered from a mixture of nanocrystalline and micron-sized powders. Ceram. Int. 45(10), 13592–13596 (2019).Article 
CAS 

Google Scholar 
Wagner, D. V., Kareva, K. V., Zhuravlev, V. A., Dotsenko, O. A. & Minin, R. V. Investigation of BaFe12O19 hexaferrites manufactured by various synthesis methods using a developed pulsed magnetometer. Inventions 8(1), 26 (2023).Article 

Google Scholar 
Dippong, T., Levei, E. A., Leostean, C. & Cadar, O. Impact of annealing temperature and ferrite content embedded in SiO2 matrix on the structure, morphology and magnetic characteristics of (Co0.4Mn0.6Fe2O4)δ (SiO2)100-δ nanocomposites. J. Alloys Compd. 868, 159203 (2021).Article 
CAS 

Google Scholar 
Ştefănescu, M., Dippong, T., Stoia, M. & Ştefănescu, O. Study on the obtaining of cobalt oxides by thermal decomposition of some complex combinations, undispersed and dispersed in SiO2 matrix. J. Therm. Anal. Calorim. 94(2), 389–393 (2008).Article 

Google Scholar 
Stoia, M., Stefanescu, M., Dippong, T., Stefanescu, O. & Barvinschi, P. Low temperature synthesis of Co2SiO4/SiO2 nanocomposite using a modified sol–gel method. J. Sol-Gel Sci. Technol. 54(1), 49–56 (2010).Article 
CAS 

Google Scholar 
Deheri, P. K., Swaminathan, V., Bhame, S. D., Liu, Z. & Ramanujan, R. V. Sol−gel based chemical synthesis of Nd2Fe14B hard magnetic nanoparticles. Chem. Mater. 22(24), 6509–6517 (2010).Article 
CAS 

Google Scholar 
Yang, J. et al. Structural and magnetic properties of nanocomposite Nd–Fe–B prepared by rapid thermal processing. Engineering 6(2), 132–140 (2020).Article 
CAS 

Google Scholar 
Zheng, Q., Li, L., Yang, X., Bian, B. & Du, J. Effect of surfactant-assisted low-temperature annealing on the refinement of particle size and enhancement of magnetic properties of SrFe12O19 ferrite. Ceram. Int. 50(9), 16520–16524 (2024).Article 
CAS 

Google Scholar 
Rianna, M. et al. Enhanced calcination temperatures of SrFe12O19 synthesized by local iron sand from Lombok Island. Case Stud. Chem. Environ. Eng. 8, 100530 (2023).Article 
CAS 

Google Scholar 
Manchón-Gordón, A. F., Sánchez-Jiménez, P. E., Blázquez, J. S., Perejón, A. & Pérez-Maqueda, L. A. Reactive flash sintering of SrFe12O19 ceramic permanent magnets. J. Alloys Compd. 922, 166203 (2022).Article 

Google Scholar 

Hot Topics

Related Articles